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Preface

This Book of Proceedings contains the full manuscripts on the works presented at AeroBest 2023,

the second edition of the ECCOMAS Thematic Conference on Multidisciplinary Design Optimiza-

tion of Aerospace Systems. This document is a testimony of the latest developments in the field,

covering awide range ofMDO computationalmethods, tools and processes and applications span-

ning civil aviation and space systems.

Following the successful debut in 2021, which was held online due to the COVID-19 pandemic, this

second edition gathered in Lisbon almost 60 participants, who assisted to 38 presentations, in-

cluding four keynote lectures by prominent speakers from academia and industry, who shared the

state-of-the-art on the computational methods, tools and processes and experimental facilities

in the field of study, and outlined the technological development roadmap for the future of sus-

tainable aviation and space technology.

The participants from academia, government laboratories and industry highlighted the growing

awareness andacceptance that 21st-century aerospace designproblemsmust simultaneously take

into account multiple physical disciplines using a seamless coupling and a friendly user-interface,

while mitigating the inevitable demanding computational resources.

Being a thematic conference, relatively small but highly focused and specialized, resulted in a dy-

namic environment that fostered interesting and productive exchanges of ideas and discussions.

A final word of appreciation to all participants, in particular to those whose work is documented in

these proceedings, that made the conference possible.

André C. Marta

(Conference Chair)

Afzal Suleman

(Conference Chair)
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Keynote Lecturers

Charbel Farhat is the Vivian Church HoffProfessor of Aircraft Structures in the School of En-

gineering and the inaugural James and AnnaMarie Spilker Chair of the Department of Aero-

nautics and Astronautics. He is also Professor of Mechanical Engineering, Professor in the

Institute for Computational and Mathematical Engineering, and Director of the Stanford-

King Abdulaziz City of Science and Technology Center of Excellence for Aeronautics and As-

tronautics. He currently serves on the Space Technology Industry-Government-University

Roundtable. From 2007 to 2018, he served as the Director of the Army High Performance

Computing Research Center at Stanford University; and from 2015 to 2019, he served on the

US Air Force Scientific Advisory Board. He is a Member of the National Academy of Engi-

neering, a Member of the Royal Academy of Engineering (UK), a Member of the Lebanese

Academy of Sciences, a recipient of a Docteur Honoris Causa fromEcole Normale Superieure

Paris-Saclay, a recipient of a Docteur Honoris Causa from Ecole Centrale de Nantes, a recip-

ient of a Docteur Honoris Causa from Ecole Nationale Superieure d’Arts et Metiers, a des-

ignated ISI Highly Cited Author in Engineering by the Institute for Science Information (ISI)

Web of Knowledge, and a Fellow of six professional societies: SIAM, ASME, IACM,WIF, US-

ACM and AIAA. He was knighted by the Prime Minister of France in the Order of Academic

Palms and awarded theMedal of Chevalier dans l’Ordre des Palmes Academiques. He is the

recipient of several other professional and academic distinctions. Professor Farhat and his

research group at Stanford University develop mathematical models, advanced computa-

tional algorithms, and high-performance software for the design and analysis of complex

systems in aerospace, automotive, marine, mechanical, and naval engineering. They con-

tribute major advances to Simulation-Based Engineering Science. Current engineering foci

in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles

(MAVs) with flexible flapping wings and N+3 aircraft with high aspect ratio wings, layout

optimization and additive manufacturing of wing structures, supersonic inflatable aerody-

namic decelerators for Mars landing, and model predictive control. Current theoretical and

computational emphases in research are onhigh-performance,multi-scalemodeling for the

high-fidelity analysis of multi-physics problems, high-order embedded boundary methods,

uncertainty quantification, probabilistic machine learning, efficient model-order reduction

for time-critical applications such as design and active control, and digital twins. Professor

Farhat is Editor-in-Chief of the International Journal for Numerical Methods in Engineering

and Editor of the International Journal for Numerical Methods in Fluids. He also serves on

the editorial boards of ten other international scientific journals. He has been an AGARD

lecturer on aeroelasticity and computational mechanics at several distinguished European

institutions, and a plenary speaker at numerous international scientificmeetings. He is the

author of over 650 refereed publications.
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António graduated with a Master’s degree in Aerospace Engineering from Lisbon Technical

University (IST) and Aerospace Vehicle Design from Cranfield University. He joined Airbus in

1998 as an Aerodynamics Engineer at Airbus UK in Bristol, working on the preliminary wing

design for the A380 and A400M programmes. He then moved to the Marketing depart-

ment, based in Toulouse, France, working on sales campaigns to airlines in Asia, Europe,

Latin America and Middle East. In 2005 he was appointed Marketing Director for the Mid-

dle East sales unit, managing all the marketing activities for this region. Subsequently, he

joined the Strategy department working on future aircraft developments, bringing several

developments to light such as the A320neo. Currently he is the Vice-President of Single

Aisle Marketing, responsible for marketing the A220 and A320 aircraft Families.
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Sergio Ricci is a Full Professor at the Department of Aerospace Science and Technology, Po-

litecnico diMilano. He has been Principal Investigator for themore than 12 European funded

research projects (EU-FP7, EU-FP6, EU-FP5) of Dipartimento di Ingegneria Aerospaziale,

with emphasis to projects GLAMOUR – Gust Load Alleviation techniques assessment on

wind tUnnel MOdel of advanced Regional aircraft (2014-2016), NOVEMOR – NOVel AIR

VEhicle configurations: from fluttering wings to MORphing flight (2011-2014), SARISTU –

Smart Intelligent Aircraft Structures (2011-2015), AWAHL – Advanced Wing And High-Lift

Design (2011-2012), FFAST – Future Fast Aeroelastic Simulation Technologies (2010-2013),

SMORPH – Smart Aircraft Morphing Technologies (2007-2009), SimSAC – Simulating Air-

craft Stability And Control Characteristics for Use in Conceptual Design (2008-2011), 3AS

– Active Aeroelastic Aircraft Structures (2005-2007). Prof. Ricci is the Founder and Edito-

rial Manager of open access International Journal of Aeroelasticity and Structural Dynamics

(www.asdjournal.org). He also serves as reviewer for many international scientific journals,

such as Aeronautical Journal, Aerospace Science and Technology, AIAA Journal, Journal of

Aircraft, Journal of Intelligent Material Systems and Structures, Mechanism and Machine

Theory, Chinese Journal of Aeronautics, Computer-Aided Civil and Infrastructure Engineer-

ing, and Statistics and Computing. He is a Member of the International Forum of Structural

Dynamics and Aeroelasticity (IFASD) Committee, a Member of the International Council

of Aeronautical Sciences (ICAS) Committee, a Member of the ACARE Italy Committee, a

Member of Aeroelastic Prediction Workshop (AeP) and a Member of RTO AVT 173 panel on

Virtual Prototyping Using Advanced MDO. He is also a member of three professional soci-

eties: American Institute of Aeronautics and Astronautics (AIAA), Royal Aeronautical Soci-

ety (RAeS) and Associazione Italiana di Aeronautica e Astronautica (AIDAA). He has been

part of the Scientific committees of several international conferences, such as the Interna-

tional Forum of Structural Dynamics and Aeroelasticity (IFASD), the International Council

of Aeronautical Sciences (ICAS) and ECCOMAS Thematic Conferences. He has given many

invited lectures in Europe andUSAonmorphing aircraft and conceptual design tools for fast

structural sizing and aeroelastic analysis and optimization. Prof. Ricci leads the AeroStruc-

tures Design Lab (ASDL), specializing in the development of multi-fidelity analysis and de-

signmethods to enable fast and efficient generation of aero-structural models for new, en-

vironmentally friendly aerospace systems. The availability of a structural model since the

beginning of design loop, i.e. at the conceptual design level, allows the designer to immedi-

ately evaluate the potential impacts from aeroelasticity on the definition of global aircraft

design parameters, as well as the possible benefits from newmaterials and technology like

morphing, in terms of global performances andweight saving. Current topics of research in-

terest include: Automatic generation of low-medium fidelity aero-structural models; Fast

structural sizing, aeroelastic analysis and optimization; Multi-objective topological opti-

mization of compliant structures for morphing application; and Active aeroelastic control,

including wind tunnel validation.
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Prof. Dr. Mehmet Yildiz is the Vice President for Research and Development at Sabanci Uni-

versity. He completed his undergraduate education in 1996 with the first rank in Metallur-

gical and Materials Engineering Department at Yıldız Technical University and received his

MSc. degree also from the Metallurgical and Materials Engineering department at Istanbul

Technical University in 2000. Between 1996-2000, he worked in two different companies as

an R&D engineer and a project manager in the fields of welding and non-destructive test-

ing. He obtained his Ph.D. degree in 2005 from Mechanical Engineering Department at the

University of Victoria, BC, Canada in the fields of computational fluid dynamics and semi-

conductor single crystal growth and then worked as a research associate and lecturer in the

same department until 2007. In 2007, he joined Sabancı University, Faculty of Engineering

Natural Sciences as a faculty member in Materials Science and Engineering Program and

since 2013, has been leading the effort of establishing Sabanci University-Integrated Man-

ufacturing Technologies Research and Application Center and its industrial leg, Composite

Technologies Center of Excellence with Kordsa. He sits in the R&D advisory board of Kasta-

monu Entegre. He contributed to the establishment of Manufacturing Engineering gradu-

ate program at Sabanci University. Dr. Yildiz’s areas of expertise include advanced compos-

ite materials, nanocomposites, structural health monitoring and computational mechan-

ics. He published more than 85 SCI indexed high impact factor journals, 8 book chapters,

prepared and presented over 135 conference papers and graduated more than 28 MSc. and

Ph.D. students.
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Programme Overview
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8:45 - 9:00 Opening Ceremony

9:00 - 10:00 Keynote Lecture I

Charbel Farhat, Stanford University

10:00 - 10:20 Coffee Break

10:20 - 12:00 Session 1 - Multi-Disciplinary Optimization I

12:00 - 13:00 Lunch

13:00 - 14:40 Session 2 - Discipline Analysis Models

14:40 - 15:00 Coffee Break

15:00 - 16:40 Session 3 - Systems Engineering and Integration

Thursday, July 20th

9:00 - 10:00 Keynote Lecture II

António da Costa, Airbus

10:00 - 10:20 Coffee Break

10:20 - 12:00 Session 4 - Design Optimization

12:00 - 13:00 Lunch

13:00 - 14:40 Session 5 - Aerospace Design and Integrated Systems

14:40 - 15:00 Coffee Break

15:00 - 16:40 Session 6 - Multi-Disciplinary Optimization II

19:30 - 22:00 Conference Dinner

Friday, July 21st

9:00 - 10:00 Keynote Lecture III

Sergio Ricci, Politecnico di Milano

10:00 - 10:20 Coffee Break

10:20 - 11:40 Session 7 - Multi-Disciplinary Optimization III

11:40 - 12:40 Keynote Lecture IV

Mehmet Yildiz, Sabanci University

12:40 - 12:50 Closing Ceremony
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DIFFERENTIABLE EMBEDDED BOUNDARY METHODS
FOR EFFICIENT MULTIDISCIPLINARY DESIGN

ANALYSIS AND OPTIMIZATION

Charbel Farhat∗1,2 and Jonathan Ho3

1: Department of Aeronautics and Astronautics
Stanford University

Stanford, CA 94305, USA
cfarhat@stanford.edu, https://aa.stanford.edu/

2: Institute for Computational and Mathematical Engineering
Stanford University

Stanford, CA 94305, USA
https://icme.stanford.edu/

3: Luminary Cloud
Redwood City, CA 94063, USA

SecondAuthor@company456.com, https://www.luminarycloud.com

Abstract. In the context of CFD and fluid-structure interaction (FSI), embedded bound-
ary methods (EBMs) are Eulerian methods that operate on non body-fitted fluid meshes in
which discrete representations of obstacle surfaces are embedded. They are attractive for
numerous reasons. They introduce such a high degree of automation in the discretization
of complex computational fluid domains that they can almost be considered as mesh free
methods. They are also the most robust solution methods for flow problems past obsta-
cles that undergo large motions, deformations, shape changes, and/or surface topology
changes. Such problems arise in FSI and multidisciplinary design, analysis, and opti-
mization (MDAO). However, EBMs typically generate discrete events that are sources of
roughness and spurious oscillations in the flow results computed at an embedded, discrete,
boundary surface or in its vicinity. At best, such numerical flaws are sufficiently small
not to affect the quality of the computations. However, they inhibit differentiation with
respect to any evolutions of the embedded surfaces. Therefore, they hinder the application
of EBMs to the gradient-based solution of MDAO problems, where they are however press-
ingly needed to avoid remeshing and the pitfalls of transferring numerical results from one
CFD mesh to another. For this reason, this lecture will present a new approach for con-
structing discrete-event-free and differentiable EBMs based on a new concept of a nodal
status, that of a smoothness indicator nodal function, and a moving least squares approach
for suppressing spurious oscillations from integral quantities computed on embedded dis-
crete interfaces. The enabling capabilities of the proposed approach will be demonstrated
for complex FSI problems such as limit cycle oscillations of complete fighter jet configu-
rations in the transonic flow regime; and MDAO of aircraft configurations characterized
by large shape adjustments and large surface topology changes in various flow regimes.

Keywords: CFD, fluid-structure interaction, embedded boundary method, gradient-
based optimization, limit cycle oscillations, large shape adjustments
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DISCIPLINARY SURROGATES FOR GRADIENT-BASED
OPTIMIZATION OF MULTIDISCIPLINARY SYSTEMS

Inês Cardoso1∗,2, Sylvain Dubreuil1, Nathalie Bartoli1, Christian Gogu2,
Michel Salaün2, Rémi Lafage1

1: ONERA, DTIS
Toulouse, France

{ines.cardoso, sylvain.dubreuil, nathalie.bartoli, remi.lafage}@onera.fr

2: Institut de Clément Ader (ICA), CNRS, UPS, INSA, ISAE, Mines Albi, Université de
Toulouse

Toulouse, France
{christian.gogu, michel.salaun}@isae-supaero.com

Abstract. Many engineering problems are described by complex multidisciplinary sys-
tems, whose behavior is dictated by a non-linear system of equations called multidisci-
plinary analysis (MDA). When optimizing these systems, the resolution of the MDA at
each evaluated design space point often represents a heavy computational burden, particu-
larly when high-fidelity solvers are used. In this work, we address the high computational
cost of the MDA by replacing the disciplinary solvers by Gaussian Process (GP) surrogate
models. This approach allows to uncouple the disciplinary solvers, similarly to what is
done in the Individual Disciplinary Feasible formulation. Moreover, a procedure for the
adaptive enrichment of the disciplinary surrogates is proposed to reduce the uncertainty
of the surrogates in the explored regions of the design space. The use of GP surrogates
further presents the advantage of an analytical gradient computation, which allows for
an easy implementation with gradient-based solvers. The performance of the proposed
approach has been tested on the analytical benchmark Sellar test case, as well as an air-
craft design problem which couples the aerodynamics and structural disciplines. Both test
cases show that the proposed approach requires less disciplinary solver calls than classical
gradient-based solvers. Finally, the proposed methodology has been integrated in ONERA’s
WhatsOpt collaborative environment. WhatsOpt generates the OpenMDAO skeleton code,
where the implementations of the disciplines can then be plugged into. Thanks to the
graphical interface of WhatsOpt, users can easily implement their models and choose the
proposed approach to solve the optimization problem.

Keywords: Multidisciplinary optimization, Gaussian processes, Disciplinary surrogates
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Inês Cardoso, Sylvain Dubreuil, Nathalie Bartoli, Christian Gogu, Michel Salaün and Rémi Lafage

1 INTRODUCTION

Multidisciplinary Design and Optimization (MDO) has become a popular tool when
designing complex systems involving several disciplines. By taking into account the in-
teractions between the participating disciplines, MDO is capable of finding more relevant
solutions, compared to when the disciplines are optimized sequentially. Formally, the non-
linear coupled system which describes the interactions between the disciplines is called
Multidisciplinary Design Analysis (MDA). The MDA is often solved using partitioned ap-
proaches, where the disciplinary solvers are called iteratively until the equilibrium of the
non-linear coupled system is found. Due to the resulting numerical cost, the use of high fi-
delity solvers directly in the MDA is often challenging. Many studies have thus focused on
the development of MDO formulations which aim to ease the computational burden [1].
Among these formulations are the multidisciplinary feasible (MDF) and the individual
disciplinary feasible (IDF) approaches [2]. In the MDF approach, the MDA is solved at
every optimizer iteration. As a result, a physically relevant solution is obtained at every
optimization stage. On the other hand, in the IDF approach, the optimizer handles both
design and coupling variables, essentially uncoupling the disciplinary solvers, but coupling
the resolution of the optimization problem and of the MDA. The IDF approach often re-
sults in a lower computational cost than the MDF approach, but a physically non-feasible
solution may be returned if the optimization fails or is terminated early.

Another way to address the high computational cost of the MDO is through the use
of surrogate models. For instance, one can build an inexpensive approximate function
of the MDA quantity of interest based on a given design of experiments. This strategy,
however, is not dedicated to multidisciplinary systems and does not take advantage of
the partitioned methods used to solve the MDA. Moreover, any enrichment of the built
approximate function requires a new resolution of the whole MDA. Therefore, a more in-
teresting solution is to build a surrogate model of each disciplinary solver. This approach
has been applied in an MDO context in [3, 4], where disciplinary solvers were used to
perform optimization using a genetic algorithm. Disciplinary surrogates have also been
used in [5] to perform MDA of an aircraft wing. For the cited applications, disciplinary
surrogates were shown to reduce the computational cost, but were required to be suffi-
ciently accurate throughout the entire design space. In an optimization context, where
the interest lies only in certain regions of the design space, this may represent a waste of
computational effort. A more efficient approach is thus to use adaptive sampling strate-
gies, where the disciplinary solvers are enriched only at points selected by the optimizer.
Such an adaptive strategy is proposed in [6], where Gaussian Processes (GPs) are used
to approximate each disciplinary solver. The uncertainty introduced by the disciplinary
GPs in the resulting random MDA is then quantified and used to determine if the built
disciplinary surrogates should be enriched.

In this work we propose to exploit the analytical computation of the disciplinary gradi-
ents that can be obtained thanks to the use of disciplinary GPs. Since gradient information
is often not available for high-fidelity solvers, the use of gradient-based optimization with
expensive disciplinary solvers has been limited. When necessary, gradient information is
obtained using approximation methods, which, for coupled systems, can require long com-
putational times. An alternative to these approaches is the coupled-adjoint method [7],
which has been used in recent literature to perform MDO thanks to its computational
efficiency [8–10]. The coupled-adjoint method remains, however, an intrusive approach
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requiring derivative information at a disciplinary solver level. The methodology proposed
in this work stands apart from the current state-of-the-art approaches as it avoids the
expensive computation of the disciplinary gradients, while still retaining a non-intrusive
approach, fit for use with black box disciplinary solvers.

Thanks to the simplicity of the proposed optimization strategy, the approach de-
scribed in this work is easily integrated within ONERA’s WhatsOpt collaborative en-
vironment [11]. WhatsOpt generates the OpenMDAO [9] skeleton code, where implemen-
tations of the disciplinary solvers can then be plugged into. By selecting the dedicated
option in WhatsOpt graphical interface, the required code to build the disciplinary surro-
gates is generated. Then, users can select any of the optimizers available in OpenMDAO
(e.g. SLSQP [12], COBYLA [13]) to solve the optimization problem.

The remainder of this work is organized as follows. Section 2 introduces the method-
ology proposed in [6] to build the disciplinary surrogates and solve the resulting random
MDA. The analytical computation of the disciplinary gradients used to perform gradient-
based optimization is equally detailed in this section. Section 3 describes the existing
implementations with ONERA’s WhatsOpt collaborative environment. In Section 4 the
proposed approach is applied to the analytical test case as well as a wing structural sizing
engineering problem. Finally, some conclusions are provided in Section 5.

2 DISCIPLINARY SURROGATES FOR MDO

2.1 Problem definition

The purpose of this work is to solve MDO problems of the form:

arg min
x∈X

fobj(x,y
∗
cobj

(x))

s.t. gm(x,y∗
cgm

(x)) ≥ 0, m = 1, ..., ng

hr(x,y
∗
chr

(x)) = 0, r = 1, ..., nh

(1)

where fobj denotes the objective function, which depends on the set of design variables
x ∈ X ⊂ Rn as well as on the set y∗

cobj
(x) composed of some (or all) of the converged

coupling variables. Similarly, gm(x,y∗
cgm

(x)) denotes the set of inequality constraints and
hr(x,y

∗
chr

(x)) is the set of equality constraints. In practice y∗
cobj

(x), y∗
cgm

(x) and y∗
chr

(x)

are subsets of y∗(x) = {y∗i (x), i = 1, ..., nd}, where nd is the number of disciplines in the
system and y∗(x) is the solution of the non-linear system (MDA), written as:

yi = fi(x,yci), i = 1, ...nd ∀x ∈X (2)

where fi is the disciplinary solver corresponding to discipline i, yci is the vector of coupling
variables that influence yi and ci is a subset of {1, ..., nd} \ {i}. It is assumed that Eq. (2)
has a unique solution for any x belonging to the design space X .

As previously stated, it is proposed to solve the MDA defined in Eq. (2) by replacing
the disciplinary solvers by GP surrogate models. In the following, the steps required to
obtain the disciplinary GPs and solve the resulting random MDA are described.

2.2 Building disciplinary surrogates

The first step of the proposed approach is to replace all disciplinary solvers fi, i =
1, ..., nd by a GP surrogate. Each GP is built from a Design of Experiments DoEfi sampled
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over the space X ×Ci, where Ci denotes the space of the coupling variables yci associated
with discipline i. The following approximation for each disciplinary solver is obtained:

f̂i(x, yci) = µi(x,yci) + ϵi(x,yci) (3)

where µi(x, yci) is the mean function of the GP and ϵi(x, yci) is a GP of zero mean
conditioned on the respective disciplinary DoE. Note that the bounds for Ci are often
not known and an initial guess must be made. In this work, we assume that an expert
judgment can be used to obtain a reasonable initial guess for the coupling variable space.

Once each disciplinary solver has been replaced by the corresponding GP approxima-
tion f̂i, we obtain the following non-linear system of equations:

ŷi(x, ŷci) = µi(x, ŷci) + ϵi(x, ŷci) i = 1, ..., nd (4)

An illustration of the proposed approximation for a two-discipline system at a fixed value
x = x∗ is shown in Figure 1, where the dotted lines represent the real disciplinary solvers
fi while the mean values of the GP approximations f̂i are given by continuous lines.

Figure 1: Illustration of the obtained MDA when the disciplinary solvers are approximated
by GPs. Comparison of true MDA solution with the surrogate mean solution.

Figure 1 shows that, for the current disciplinary GP approximations, the surrogate mean
solution does not correspond to the real MDA solution at x = x∗. In the following section,
we will describe how to enrich the disciplinary surrogates until the surrogate mean solution
is sufficiently accurate at x = x∗.

Before we proceed, however, it is worth addressing the case where the coupling variables
are not scalar, but rather high dimensional vectors, such as displacement or pressure
fields. Additional operations are required when this is the case for one or all disciplinary
solvers, since, in order to build the disciplinary GPs, a low dimensional input space is
required. Fortunately, this issue has already been addressed in [14], where it is proposed
to reduce the coupling variable space using Proper Orthogonal Decomposition (POD)
before obtaining the disciplinary GP surrogates. In this work, we will employ the same
strategy proposed in [14] any time the coupling variables are high-dimensional vectors. A
brief description of the main steps is provided in the following.
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Let the high-dimensional vector yi be the output of the disciplinary solver fi. Using
POD, yi may be represented in a linear subspace according to:

yi(x,yci) ≈ ỹi(x,yci) = ϕi
0 +

ni∑

j=1

αi
j(x,yci)ϕ

i
j (5)

where ϕi
j, j = 1, ..., ni are the basis vectors, aij are the corresponding coefficients and ϕi

0 is
a constant vector. Note that ni determines the number of vectors of the basis associated
with solver fi and is typically chosen so that a given percentage of the snapshots variance
is captured by the POD basis.

Using the approximation defined in Eq. (5), we can rewrite the reduced MDA as follows:

αi
1(x,α

ci), ..., αi
ni

(x,αci) = Φi(x,αci) i = 1, ..., nd (6)

where Φi denotes the operation allowing to obtain the POD coefficients for the disciplinary
solver fi and αci denote the POD coefficients of the coupling variables influencing the
value of αi

j, j = 1, ..., ni. In this new reduced space, it becomes possible to build the
disciplinary GP approximations. For the disciplinary solver fi, the idea is to replace each
coefficient of the POD basis by a GP, and to write the resulting reduced MDA as:

α̂i
j = µi

j(x, α̂
ci) + ϵij(x, α̂

ci) ∀i = 1, ..., nd ∀j = 1, ..., ni (7)

Note that, in this case, expert judgment cannot be used to provide an initial guess for
the coupling variable space. A solution for the construction of an appropriate DoE for
the training of the POD basis is detailed in [14]. To avoid additional disciplinary solver
calls, this same DoE is then used to train the disciplinary GPs.

2.3 Solving the random MDA

The previous section described how GP approximations of the disciplinary solvers can
be obtained. In this section, we will focus on how to solve the random MDA given by
Eq. (4). As was shown in Figure 1, using only the GPs mean value, we are unable to
accurately solve the MDA. This is because the uncertainty of the disciplinary surrogates
is not accounted for. This uncertainty is given by the GPs variance, which introduces ran-
domness in the MDA. Thus, the first step in solving the MDA is to model the uncertainty
of the disciplinary surrogates and, therefore, evaluate their accuracy.

It is proposed in [6] to model the uncertainty of the disciplinary GPs by considering
perfectly dependent GPs, whose correlation function is constant and equal to one. The
random MDA is rewritten as:

ŷ′i(x, yci) = µi(x, yci) + σi(x, yci)ξi i = 1, ..., nd (8)

where σi(x, yci) is the standard deviation and ξi is a standard Gaussian random variable. It
should be noted that the solution of Eq. (8) depends on the sample Ξ = {ξi, i = 1, ..., nd}
drawn and thus, by drawing different samples, different solutions of the MDA are obtained.
Figure 2 illustrates how different MDA solutions can be obtained at a given x = x∗ when
different samples of the random vector Ξ are drawn.

To characterize the dispersion of the random MDA solutions, a sufficiently large number
of samples should be drawn. Nonetheless, because the disciplinary GPs are inexpensive
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Figure 2: Illustration of the different MDA solutions obtained when drawing different
samples of the random vector Ξ.

to evaluate, a direct Monte Carlo (MC) method may be used. Then, using the nMC MC
simulations, we can estimate the coefficient of variation (CV) of the system’s quantities

of interest (Q̂oI), typically the objective and constraint functions. Note that, due to the
use of disciplinary GPs, these quantities are now random variables. Their coefficient of
variation may be written as:

CV(Q̂oI(x,Ξ)) =

√
V(Q̂oI(x,Ξ))

E(Q̂oI(x,Ξ))
(9)

where E is the expected value and V is the variance. If the CV of all QoI at a given x = x∗

is below a given threshold, then the disciplinary surrogates are sufficiently accurate and the
surrogate mean solution at x = x∗ is approximately the real MDA solution. Otherwise,
the disciplinary surrogates should be enriched at x = x∗.

In [6] it is proposed to enrich both disciplinary solvers simultaneously, however, this is
not computationally efficient as only one of the disciplinary surrogates could be inaccurate.
An alternative procedure is thus proposed in [14], where the less accurate disciplinary
surrogate is chosen according to the Sobol sensitivity indices [15], given by:

Si(x) =
V[E[Q̂oI(x) | ξi]]

V[Q̂oI(x)]
, i = {1, ..., nd} (10)

where Si is the Sobol index associated with discipline i, and Q̂oI(x) is chosen as the
quantity of interest with the highest CV. We note that, in this work, the Sobol sensitivity
indices are estimated using a Polynomial Chaos Expansion approximation [16].

Once all sensitive indices are obtained, the discipline with the highest Si is selected
for enrichment. This process is repeated iteratively until the CV of all QoI is sufficiently
small at x = x∗. To illustrate the enrichment process, Figure 3 shows the evolution of the
disciplinary GPs until they are sufficiently accurate at x = x∗. Note that, in the given
example, both disciplinary surrogates are enriched. However, there may be points in the
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design space where the enrichment of only one of the disciplinary surrogates is enough to
have a sufficiently accurate solution.

(a) Initial surrogates. (b) First enrichment.

(c) Second enrichment. (d) Last enrichment.

Figure 3: Illustration of the disciplinary surrogate enrichment process at x = x∗. (a)
Initial disciplinary GPs. (b) Enrichment of first disciplinary surrogate. (c) Enrichment of
the second disciplinary surrogate. (d) Re-enrichment of the first disciplinary surrogate.
After this iteration, the disciplinary GPs are sufficiently accurate at x = x∗.

Using the above described enrichment strategy, it is possible to find the solution to
Eq. (4), with a relatively small error, at any point x ∈ X . In the context of gradient-
based optimization, enrichment of the disciplinary surrogates is made, whenever necessary,
at points queried by the optimizer. This limits the computational effort to regions of the
design space relevant for the optimization problem. The following section details how
the derivatives of the disciplinary GPs outputs with respect to the design variables are
obtained. Note that the derivatives of the objective and constraint functions with respect
to the design variables may then be obtained using the chain rule.
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2.4 Gradient computation

In the previous section we detailled how to solve the random MDA obtained when the
disciplinary solvers are replaced by perfectly dependent GPs (see Eq. (8)). In this section,
we are interested in obtaining the derivatives of the disciplinary surrogates with respect
to the design variables in order to perform gradient-based optimization. For this purpose,
we distinguish the case where the coupling variables are scalars from the case where they
are high-dimensional vectors.

For the first case, where the coupling variables are scalars, the partial derivative of
ŷ′i(x, yci) with respect to the design variable xk is written as:

∂ŷ′i(x, yci)

∂xk
=
∂µi(x, yci)

∂xk
+
∂σi(x, yci)

∂xk
ξi i = 1, ..., nd (11)

where the partial derivatives of the mean and standard deviation functions depend on the
choice of mean trend and correlation function used.

For the second case, where the coupling variables are high-dimensional vectors, we will
here assume that model order reduction using POD approximation was first performed
and that ŷ′i(x, yci) is of the form:

ŷ′i(x, α̂
ci) = ϕi

0 +

ni∑

j=1

α̂j
i(x, α̂ci)ϕi

j (12)

where α̂j
i(x,yci) denotes the GP approximation of the POD coefficient associated with

the basis vector ϕi
j. In this case, the partial derivative of ŷ′i(x, yci) with respect to the

design variable xk can be written as:

∂ŷ′i(x, α̂
ci)

∂xk
=

ni∑

j=1

(
∂µi

j(x, α̂
ci)

∂xk
+
∂σi

j(x, α̂
ci)

∂xk
ξij

)
ϕi
j i = 1, ..., nd (13)

The expressions presented above allow an analytical computation of the disciplinary
gradients with respect to the design variables, which can be used to perform gradient-based
optimization while still treating the disciplinary solvers as black boxes. The following
section describes the integration of the proposed strategy within ONERA’s WhatsOpt
collaborative environment.

3 THE WHATSOPT COLLABORATIVE ENVIRONMENT

An important objective envisioned for the approach presented in this work is its rapid
implementation and compatibility with any black box solver input in the system. To that
end, the approach proposed in this work has been integrated with ONERA’s WhatsOpt
collaborative environment.

3.1 Basic WhatsOpt usage

WhatsOpt is a web application which allows users to define multidisciplinary analysis
problems in terms of disciplines and data exchanges [11]. Once the problem has been
defined, WhatsOpt generates the OpenMDAO [9] skeleton code where implementations
of the disciplinary solvers can be plugged into. Figure 4 displays the user graphical
interface when a generic two-discipline MDO problem is generated using WhatsOpt.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

9



Inês Cardoso, Sylvain Dubreuil, Nathalie Bartoli, Christian Gogu, Michel Salaün and Rémi Lafage

Figure 4: WhatsOpt graphical interface. Implementation of a generic two-discipline MDO
problem.

Figure 4 shows that when implementing an MDO problem in WhatsOpt an interac-
tive eXtended Design Structure Matrix (XDSM) [17] of the problem is generated auto-
matically, allowing users to easily control the flow of information between the different
disciplines. Additionally, an interactive table allows users to define all disciplinary inputs
and outputs as design or state variables as well as objective or constraint functions. The
bounds for the design variables can also be defined at this step.

Once users are done with the problem definition, they can request WhatsOpt to gen-
erate the required scripts to run the problem. For all disciplines, objective and constraint
functions, WhatsOpt will generate a python script where the respective output computa-
tions should be implemented by the user. WhatsOpt will equally generate the required
files to solve the MDA and MDO problems. The latter will use by default OpenMDAO
solver options. The list of generated files for the problem represented in Figure 4 is:

• Disc1 base.py, Disc2 base.py, Functions base.py: these files contain connec-
tion information (inputs and outputs) for all defined disciplines;

• Disc1.py, Disc2.py, Functions.py: these are python class files where the disci-
plines computations should be implemented by the user;

• MDO Problem base.py, MDO Problem.py: these files contain the definition of the
problem as a whole;

• mda init.py, run mda.py, run mdo.py: these files allow to solve the MDA and
MDO problems using the real disciplinary solvers.

Some additional files are also generated, but they are not relevant for the implementa-
tions proposed in this work. As a result we will abstain from providing further details on
them.
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3.2 Disciplinary surrogate option

To solve the MDA according to the approach proposed in Section 2 users must state
that they want the disciplinary solvers to be replaced by surrogates, as proposed in the
Efficient Global Multidisciplinary Design Optimization (EGMDO) algorithm [6]. This
option is available under the OpenMDAO tab of the WhatsOpt graphical interface. Fig-
ure 5 displays the OpenMDAO menu, where the option ’EGMDO surrogate’ has been
ticked for the two disciplinary solvers of the MDO problem defined in Figure 4.

Figure 5: WhatsOpt OpenMDAO menu. Option ’EGMDO surrogate’ selected for both
disciplinary solvers.

It should be noted that when ticking the ’EGMDO surrogate’ option users are required
to provide an initial guess for the coupling variable space. This can be done in the
interactive table shown in Figure 4. Then, all users have left to do is to ask WhatsOpt
to generate the code. Since the option ’EGMDO surrogate’ has been selected, WhatsOpt
will automatically generate the necessary scripts to solve the problem using the approach
presented in Section 2. In addition to the scripts described in Section 3.1, the following
files are generated:

• algorithms.py: this is the main file containing the implementation of the proposed
methodology, as it was described in Section 2;

• doe factory.py: this file is responsible for the initial sampling used to build the
disciplinary surrogates;

• gp factory.py: this file serves both for the creation of the disciplinary surrogates
as well as for the updating of the surrogates whenever enrichments are performed;

• random analysis.py: this file solves the random MDA at nMC samples of the ran-
dom vector Ξ;

• MDO Problem egmda.py: this file contains the problem definition, when the disci-
plinary solvers are replaced by their respective surrogates;

• run egmda.py, run egmdo.py: these files allow to solve the MDA and MDO prob-
lems using the disciplinary surrogates.

Assuming that the disciplinary solvers have been previously implemented in the re-
spective Disc1.py and Disc2.py files, users don’t need to make any additional imple-
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mentations in order to solve the MDA or MDO problems using the approach proposed in
Section 2. Some remarks should nonetheless be made concerning the generated scripts.
Sampling of the design and coupling variable spaces is made using a Latin Hypercube
Sampling [18] strategy. Moreover, the GP surrogates are built using the KRG class of the
SMT: Surrogate Modelling Toolbox [19]. By default constant mean and squared expo-
nential correlation functions are used. Finally, WhatsOpt generates all necessary code to
compute the derivatives of the disciplinary surrogates outputs with respect to the design
variables using the SMT predict derivatives function. OpenMDAO will then use this
information when gradient-based optimizers are chosen to solve the MDO problem. In the
following we will use the code generated by WhatsOpt to solve an analytical benchmark
test case, as well as an engineering structural sizing problem.

4 APPLICATIONS

In this section we will use the methodology described in Section 2 to solve two MDO
problems. To that end, both problems will be defined in the WhatsOpt graphical interface
and the generated scripts will be used to solve the optimization.

4.1 Analytical Sellar benchmark test case

The Sellar benchmark test case [20] is a constrained MDO problem using analytical
disciplinary solvers. It is defined as:

arg min
z∈Z

z33 + z2 + y∗1 + exp(−y∗2)

s.t. 3.16− y∗1 ≤ 0

y∗2 − 24 ≤ 0

(14)

where z = {z1, z2, z3} is the set of design variables, Z is the design space defined as
Z = [−10, 10] × [0, 10] × [0, 10], and y∗ = {y∗1, y∗2} is the solution of the following non-
linear system of equations:

{
y1 = z21 + z2 + z3 − 0.2y2

y2 =
√
y1 + z1 + z2

(15)

The Sellar problem has a local minimum at z′ ≈ {−1.7171, 0.1384, 0.1128} and a global
minimum at z∗ ≈ {1.9776, 0, 0}.

To assess the performance of the approach proposed in this work, we first implemented
the Sellar problem in the WhatsOpt graphical interface. There, we ticked the options
’EGMDO surrogate’ for both disciplinary solvers and provided the initial guess for the
coupling variable spaces as y1 ∈ [0, 25] and y2 ∈ [0, 25]. Once the problem was defined,
WhatsOpt generated all codes required to solve the optimization problem using both the
real disciplinary solvers as well as the disciplinary GPs. We then manually implemented
the disciplinary, objective and constraint function computations in the respective python
class files. Finally we solved the optimization problem by running the run mdo.py and
run egmdo.py files from five randomly generated starting points. The chosen optimizer
was the gradient-based Sequential Least SQuares Programming (SLSQP) [12] for both
approaches and the number of points used to build the initial disciplinary GPs was four.
Table 1 shows the results obtained when the real disciplinary solvers were used in the
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MDA while Table 2 presents the results obtained when the disciplinary surrogates were
used. We note that the same five starting points were used for the two methods.

Table 1: Optima found and number of disciplinary solver calls obtained when solving
the MDO using the real disciplinary solvers in an MDF approach. Optimization results
obtained from five different starting points.

z0 z∗1 z∗2 z∗3 f ∗
obj n1 n2

#1 1.9776 0.0 0.0 3.1834 127 127
#2 1.9776 0.0 0.0 3.1834 125 125
#3 -1.7171 0.1384 0.1128 4.1307 188 188
#4 -1.7171 0.1384 0.1128 4.1307 142 142
#5 1.9776 0.0 0.0 3.1834 110 110
Average number of disciplinary solver calls 138.4 138.4

Table 2: Optima found and number of disciplinary solver calls obtained when solving
the MDO using the disciplinary surrogates in an MDF approach. Optimization results
obtained from five different starting points.

z0 z∗1 z∗2 z∗3 f ∗
obj n1 n2

#1 1.9776 0.0 0.0 3.1834 15 14
#2 1.9783 0.0 0.0 3.1828 10 10
#3 -1.7089 0.1287 0.1492 4.1223 13 11
#4 -1.7157 0.1407 0.1153 4.1306 13 9
#5 1.9776 0.0 0.0 3.1834 12 10

Number of disciplinary DoE points 4 4
Average number of disciplinary solver calls 16.6 14.8

As is shown, when using the real disciplinary solvers, the optima found depend solely on
the starting point. Contrarily, when using the disciplinary surrogates, the optima found
vary slightly depending on the quality of the surrogate approximations (for instance, for
starting point #2 the solution does not correspond exactly to the global minimum and a
small error is committed). Concerning the computational cost, we note that when using
the real disciplinary solvers, an average of 138.4 calls were made to each disciplinary
solver. On the other hand, when disciplinary GPs were used, an average of n1 = 16.6
calls were made to the first disciplinary solver, while an average of n2 = 14.8 calls were
made to the second disciplinary solver.

The results presented in Table 1 were obtained using an MDF approach. Nevertheless,
the IDF approach often results in a lower computational cost since the MDA is not solved
in every iteration. For this reason, we have implemented the Sellar problem using the
IDF approach. The resulting XDSM, obtained using the WhatsOpt graphical interface,
is shown in Figure 6. As is shown, when using the IDF approach, consistency constraints
must be added to the problem to assure the feasibility of the optimal solution.

The results obtained when solving the MDO using the real disciplinary solvers in an
IDF approach are displayed in Table 3. We remark that, while the selected starting
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Figure 6: Implementation of the Sellar problem in using the IDF approach. XDSM
obtained using the WhatsOpt graphical interface.

points for the design variables are the same as the ones used in Tables 1 and 2, for
the IDF approach we must also provide an initial guess for the coupling variable values.
For each initial starting point a random value was generated to initialize the coupling
variables.

Table 3: Optima found and number of disciplinary solver calls obtained when solving the
MDO using the real disciplinary solvers in an IDF approach.

z0 z∗1 z∗2 z∗3 f ∗
obj n1 n2

#1 1.9776 0.0 0.0 3.1834 56 56
#2 1.9776 0.0 0.0 3.1834 50 50
#3 -1.5655 0.7879 0.1210 4.3304 61 61
#4 1.9776 0.0 0.0 3.1834 67 67
#5 1.9776 0.0 0.0 3.1834 62 62
Average number of disciplinary solver calls 59.2 59.2

Table 3 shows that, when using the real disciplinary solvers, the IDF approach presents
a computational cost that is half of the one obtained when the MDF approach was used.
Nevertheless, for starting point #3 the IDF approach did not find the local nor the global
optimum. Finally we note that, while the methodology proposed in this work can only be
used in an MDF approach, it still requires significantly less disciplinary solver calls than
when the real disciplinary solvers are used with either MDF or IDF approaches.

4.2 Wing structural sizing test case

An aircraft wing is a multidisciplinary system, whose coupled behavior is described by
the aerodynamic and structural disciplines. Together, these disciplines define the following
non-linear system of equations:

{
us =Ms(x, fa)

fa =Ma(x, us)
(16)

where us ∈ Cs ⊂ Rds is the structural displacement of the wing, fa ∈ Ca ⊂ Rda is the vector
of aerodynamic forces acting upon the wing, Ms and Ma are, respectively, the chosen
structural and aerodynamics models and x ∈X is some set of the design variables which
influences the aerodynamic behavior, the structural behavior, or both. In this section,
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we will optimize the wing structure in order to minimize the wing mass under structural
failure constraints. To that end, we consider the following disciplinary solvers.

To obtain the structural displacement us, the wing is modeled using the finite element
solver Code Aster [21] and a linear elastic behavior is assumed. To obtain the aerodynamic
forces fa, the non-linear Euler equations are solved using the finite volume solver SU2 [22].
Figure 7 illustrates the structural mesh (Figure 7(a)) and the aerodynamic surface mesh
(Figure 7(b)) used to obtain us and fa, respectively. We note that, for the structural mesh,
the upper skin was removed to facilitate the visualization of the wing internal structure.

(a) Structural mesh. (b) Aerodynamic surface mesh.

Figure 7: Structural mesh (a) and aerodynamic surface mesh (b) used in the wing struc-
tural sizing test case.

As is shown, the wing structure is composed of shell elements used to model the wing’s
ribs, skins and spars. In terms of geometry, a high aspect ratio wing (AR = 15) is defined,
presenting a half span of 20.53 meters. The number of spars was set to two, placed at
35% and 60% of the chord and the number of ribs was set to 68. For the flight conditions
ground level (0ft) and subsonic flight (Mach number of 0.64) are chosen.

To transfer the loads and displacements between the non-coincident structural and
aerodynamic meshes, interpolation across the fluid-surface interface is made. It seeks to
ensure the conservation of energy, force and moment, according to:

δW = δuTs fs = δuTa fa (17)

where δW is the virtual work, δu are the virtual displacements and f are the force vectors.
An interpolation matrix H ∈ Rda×ds is then defined using Radial Basis Functions (RBF),
as proposed in [23]. This matrix allows to write the displacements of the aerodynamic
nodes as ua = Hus and the structural loading at the nodal points as fs = HTfa.

A structural sizing optimization problem is now defined. It seeks to minimize the mass
of the wing structure with respect to failure constraints, according to:

arg min
x∈X

mw

s.t. VMIS ≤ σy
2

(18)

where x is a set of structural design parameters, mw is the wing mass, VMIS denotes
the maximum value of the Von Mises stress and σy is the material yield stress, set to 270
MPa. In practice the failure constraint is evaluated for a 2.5g pull-up maneuver condition.
As a result, for each set of structural input parameters x queried by the optimizer, a sub-
problem is solved to find the angle of attack for which L = 2.5W is verified, where L
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is the lift and W is the aircraft weight. In WhatsOpt this is achieved by defining a
single-discipline problem for the structural sizing, as shown in Figure 8(a). The discipline
’trim mdo’ is then defined as a sub-problem where the MDA is included (Figure 8(b)).

(a) Structural sizing problem. (b) Trim mdo sub-problem.

Figure 8: XDSM of the structural sizing problem (a) and trim sub-problem (b) obtained
in the WhatsOpt graphical interface.

The structural input parameters are chosen as the thicknesses of the different structural
components, i.e., the thickness of the wing ribs (tr), skins (tsk) and spars (tsp). The
range of variation of each input is scaled to take values in [0, 1], however, the unscaled
thickness bounds were chosen so that a sufficient variation of the MDA outputs is obtained.
Table 4 summarizes the defined optimization problem, whereas Figure 9 illustrates the
displacement fields obtained for the L = 2.5W condition when all input parameters are set
to either zero or one. As is shown, for the same flight condition, the wing tip displacement
is much greater when all input parameters are set to zero, with a maximum observed wing
tip displacement of 2.32 meters.

Table 4: Structural sizing problem. Bounds for design variables and constraint functions
are provided, where applicable.

Quantity Lower bound Upper bound

Minimize Wing mass (mw) −− −−
w.r.t. Wing rib thickness (tr) 0 1

Wing skin thickness (tsk) 0 1
Wing spar thickness (tsp) 0 1

s.t. Von Mises stress (VMIS) ≤ σy/2

The structural sizing problem is first solved using the real disciplinary solvers. For
that, the OpenMDAO non-linear block Gauss-Seidel solver (NLBGS) was chosen to solve
the MDA and a relative tolerance of 0.01 was selected. For the optimizer the gradient-
based SLSQP optimizer is used, with a relative tolerance set to 10−3. Additionally, since
gradient information for the real disciplinary solvers is not available, the derivatives are
approximated at each iteration using finite differences with a step size of 10−4. The
computational cost of the gradient approximation is included in the overall cost of the
framework. Finally, to assess the existence of local minima, the optimizer is run from
three different starting points. The obtained results are summarized in Table 5.

Table 5 shows that, for all three starting points tested, the optimizer found similar
solutions, suggesting that there is only one optimum. Moreover, during the three runs
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Figure 9: Wing displacement fields obtained for different sets of input parameters. The
undeformed wing shape is given as reference.

Table 5: Mass minimization problem. Optima found and number of disciplinary solver
calls obtained when solving the MDO using the real disciplinary solvers. Optimization
ran from three different starting points.

x0 m0 [kg] t∗r t∗sk t∗sp m∗
w [kg] VMIS∗ [MPa] nevala nevals

#1 14175.7 0.0 0.1943 0.1988 5167.8 135.03 787 787
#2 14132.7 0.0 0.1950 0.1973 5172.1 134.98 492 492
#3 14360.1 0.0 0.1934 0.2034 5170.4 135.00 590 590

Average number of disciplinary solver calls 623 623

performed, an average of 623 calls were made to each disciplinary solver. This number
can be expected to increase if a more complex problem is considered, for instance, by
increasing the number of design variables or constraint functions. This justifies the need
for an optimization framework that is computationally more efficient.

To solve the problem using the approach described in this work, we first need to reduce
the dimension of the coupling variable space. We remark that the dimension of us is the
number of degrees of freedom obtained for the defined structural model (in this work
ds = 51048) while the dimension of fa is the number of nodes in the wing surface mesh
(in this work da = 15697). Using the POD approximation described in Section 2, these
dimensions can be reduced, allowing for the construction of the disciplinary GPs. It is
worth noting that, while the POD bases cannot be built using the code generated by
WhatsOpt, the DoE used to train the POD approximations can be fed directly to the
gp factory.py file to construct the initial disciplinary GPs. Table 6 shows the number
of POD coefficients, as well as the number of disciplinary solver calls made during the
training of the disciplinary POD bases.

Table 6 shows that, using POD approximation, the aerodynamics discipline may be
represented by as little as 10 coefficients while the structural discipline is represented by
as little as 3 coefficients. Moreover, we see that, during the training of the POD bases, an
average of 36 calls are made to the aerodynamics disciplinary solver while an average of
26 calls are made to the structural disciplinary solver. In the following, the computational
cost of this initial training stage will be accounted for in the overall cost of the framework.

As was done before, the problem is solved from different initial starting points. For each
starting point, new disciplinary POD bases are generated and the initial disciplinary GPs
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Table 6: Number of coefficients in the aerodynamics (na) and structural (ns) POD bases
obtained for three different runs. Number of disciplinary solver evaluations (nevala and
nevals) made during the training stage.

na ns nevala nevals

Run #1 10 4 36 26
Run #2 11 3 36 26
Run #3 10 3 36 26

E 10.3 3.3 36 26

are built. The default options of constant mean trend and squared exponential correlation
function are used. The random MDA is then solved at each point queried by the optimizer
according to the methodology described in Section 2.3. A sample size nMC of 2500 is used
and a threshold of 0.03 is set for the CV of both objective and constraint functions. For
the optimizer, the SLSQP solver is chosen with the same convergence criteria used for the
real disciplinary solvers. The analytical disciplinary gradients are obtained as described
in Section 2.4 The obtained results are presented in Table 7.

Table 7: Mass minimization problem. Optima found and number of disciplinary solver
calls obtained when solving the MDO using the disciplinary GPs.

x0 m0 [kg] t∗r t∗sk t∗sp m∗
w [kg] VMIS∗ [MPa] nevala nevals

#1 14174.7 0.0 0.1980 0.1199 4959.66 134.97 46 53
#2 14132.5 0.0 0.1800 0.2102 5013.87 135.04 44 43
#3 14360.1 0.0 0.1593 0.3139 5076.71 135.02 54 51

Average number of disciplinary solver calls 48 49

Table 7 shows that, when using the disciplinary GPs, the optimum value of mass
obtained close to the one found using the real disciplinary solvers, with the disciplinary
GPs being slightly more optimistic. The maximum relative error is obtained for starting
point #1 where the mass obtained using the disciplinary GPs is 4.03% lower than the one
given by the real disciplinary solvers. Despite obtaining close objective function values,
the optimal sets of design variables found using the disciplinary GPs were not the same
as those presented in Table 5, suggesting that either objective or constraint functions are
not sufficiently well captured by the random MDA. To test this hypothesis the true MDA
was solved at the points found using the disciplinary surrogates. Table 8 compares the
results obtained using the true and random MDAs.

Table 8 shows that, as expected, the random MDA commits a small error in the value
of the constraint function, leading the algorithm to believe that the points found belong
to the feasible region and therefore allowing for more optimistic results. This a conse-
quence of the chosen criterion for the CV, which was set to 0.03. More accurate results
could possibly be obtained by choosing a stricter criterion, however, some conducted tests
showed that this often leads the algorithm to enrich the disciplinary surrogates several
times at the same design space point, resulting in poorly constructed GP approximations.

Finally, we compare the computational cost obtained using the real disciplinary solvers
with that obtained using the disciplinary GP approximations. Table 7 shows that, when
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Table 8: Mass minimization problem. Optima found and number of disciplinary solver
calls obtained when solving the MDO using the disciplinary GPs.

mw [kg] VMIS [MPa]
x∗ Real GPs Error [%] Real GPs Error [%]

#1 4959.69 4959.66 ≤ 10−3 137.99 134.97 2.19
#2 5013.88 5013.87 ≤ 10−3 137.02 135.04 1.44
#3 5076.72 5076.71 ≤ 10−3 136.97 135.02 1.44

using the disciplinary GPs, an average of 48 calls were made to structural disciplinary
solver while an average of 49 calls were made to the aerodynamics solver. This represents
a reduction by a factor of 12 compared to the number of disciplinary solver calls made
when the real disciplinary solvers were used directly in the MDA (see Table 5).

5 CONCLUSIONS

This work proposes a gradient-based optimization framework that uses disciplinary sur-
rogates to reduce the computational cost of solving the MDA. To that end, the methodol-
ogy proposed in [6] is used to build and enrich the disciplinary surrogates. The derivatives
of the disciplinary surrogates are then provided to the optimizer to perform gradient-
based optimization. Thanks to ONERA’s WhatsOpt [11] collaborative environment the
proposed methodology is fully implemented within NASA’s OpenMDAO framework [9].

Application to an analytical benchmark test case as well as an engineering test case
confirmed the interest of the proposed methodology. For the analytical benchmark test
case, both MDF and IDF approaches were tested and it was shown that the proposed
methodology required less disciplinary solver calls than either approach. For the structural
sizing problem, where the disciplinary solvers are high-fidelity solvers, the obtained results
were subject to a small error, leading to slightly optimistic results compared to those
obtained using the real disciplinary solvers.

Lastly, the main difficulty of the proposed methodology lies in handling high-dimensional
coupling variables. In this work, this challenge was tackled using the DPOD+I strategy
proposed in [14], which uses POD approximations to obtain a low dimensional coupling
variable space, over which the disciplinary surrogates are built. Nonetheless, it can be
expected that for more non-linear disciplinary solvers the number of POD coefficients
required to obtain a small projection error may be too large for the combined used with
GP interpolation. Future work is thus expected to address this challenge by exploring
alternative model order reduction techniques [24, 25].
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Abstract. High Aspect Ratio (HAR) and Strut-Braced Wings (SBW) configurations rep-
resent promising avenues of research for meeting the challenge of reducing aviation carbon
emissions. Both high and low fidelity models have already been developed for the above-
mentioned configurations as well as for the NASA Common Research Model (CRM) that
will serve as a baseline for performance comparisons. These aero-structural models are
then implemented within an in-house aeroelastic framework for analysis and optimiza-
tion. High-fidelity models correspond to a RANS aerodynamic analysis associated to a 3D
wingbox finite-elements (FE) analysis. Conversely, low-fidelity models resort to a VLM
aerodynamic analysis associated to a 1D beam model FE analysis. The objective of this
work is to use the so developed models to perform multidisciplinary optimization in order
to assess performance improvements potential at preliminary design stage. Different levels
of fidelity were developed with a multifidelity approach in mind for further developments.
The use of a multifidelity approach makes it possible to reduce computational costs by
mainly resorting to low-fidelity computations and only running high-fidelity computations
when necessary. Then, aeroelastic optimization is carried out on a modified version of
the CRM wing with a higher aspect ratio to study aerodynamic gains. Afterwards, a SBW
configuration, here the PADRI geometry, is examined to evaluate its mass reduction po-
tential in addition to the drag reduction provided by the increased aspect ratio. This work
currently focuses on aeroelastic optimization using a single fidelity, but is to be further
extended to a multifidelity approach.

Keywords: High Aspect Ratio (HAR) wings, Strut-Braced wings (SBW), Aeroelasticity,
Multidisciplinary Design Analysis and Optimization (MDAO)
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1 INTRODUCTION

Reducing aviation carbon emissions could potentially be achieved through the use of
High Aspect Ratio (HAR) [1] and Strut-Braced Wings (SBW) configurations. Multi-
disciplinary design optimization (MDO), and in particular aerostructural optimization is
necessary in order to make the most of these configurations [2]. Preliminary design studies
need to be performed in order to evaluate the performance of a large number of aircraft
configurations. Specific models has to be developed to this purpose to mitigate initially
high computational costs [3].

The issue of computational costs [3] is critical when it comes to aerostructural studies.
This can be dealt with by resorting to surrogate models to approximate a system [4], be
it for CFD or finite-elements analysis (FEA), using a certain number of samples.

Multifidelity can also be a promising strategy to reduce computational costs. Indeed,
when choosing such a method, surrogate models are trained using models with different
levels of fidelity, and thus accuracy and computational costs. An algorithm helps find a
balance between computation time and physical accuracy.

In this work we use an aeroelastic analysis and optimization framework developed by
[5], the aerostructure package [6], which is implemented within the OpenMDAO frame-
work [7].

The final goal of this study is to use aerostructural models of both high and low
fidelity to apply a multifidelity approach in order to assess the performance of several
configurations of interest in an efficient way. This paper will present the use of high and
low fidelity aeroelastic models for the optimization of different configurations. High and
low fidelity aeroelastic optimizations are then performed and results compared.

2 TARGETED CONFIGURATIONS

The objective of this work is to study different configurations to assess potential per-
formance improvements through optimization.

The first goal is to study the effects of increasing wing aspect ratio. To this purpose
we chose to focus on the uCRM-13.5 model developed in [8]. This model corresponds
to a modified version of the NASA CRM model, with an aspect ratio increased by 50%.
Main geometrical dimensions are summarized in table 1. Also, uCRM-9.0 geometry will be
used as a baseline in order to assess the benefits of increasing the aspect ratio, particularly
in term of induced drag reduction. This model corresponds to the undeformed version
of NASA Common Research Model (CRM) [9]. The so developed models have been
validated using data provided in [8], for both uCRM-9.0 and uCRM-13.5 (see previous
paper). Figure 1 presents the geometry of the NASA CRM wing.

The second goal is to study the effects of adding a strut to a high aspect ratio wing,
particularly in terms of potential mass reduction. To this purpose we are focusing on
the PADRI configuration. Main geometrical dimensions are summarized in table 1. The
strut-wing junction is positioned at 42% of half-span and at 50% of the corresponding
chord. Figure 2 presents the geometry of the PADRI configuration.
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Figure 1: Geometry of the NASA Common Research Model (CRM).

Figure 2: Geometry of the PADRI configuration (Platform for Aircraft Drag Reduction
Innovation).

Table 1: Main geometrical parameters of targeted configurations.

Name uCRM-9.0 uCRM-13.5 PADRI
Planform area [m2] 383.74 384.05 161.00
Span [m] 58.76 72.00 55.6
MAC [m] 7.01 5.36 3.264
Aspect ratio 9.0 13.5 19.2
Taper ratio 0.275 0.250 0.256
1/4 Chord sweep [deg] 35.0 35.0 15.0
Dihedral [deg] 0.0 0.0 -4.0
Cruise Mach 0.85 0.85 0.72

3 METHODOLOGY

3.1 Aerostructural framework implementation

The aeroelastic analysis and optimization framework used in this study, developed by
[5], is written in Python language and makes use of the OpenMDAO platform that is well
suited for MDAO problems. This framework is able to solve both static and dynamic
aeroelasticity problems. The way it works is presented in figure 3, each block (green
boxes) corresponds to a specific component. The other boxes are used for linking the
components together, feeding inputs from different outputs. Here two main disciplines
run within the framework. First, the aerodynamic problem is solved either with DAFOAM
or AVL depending on the chosen level of fidelity. Then, solving the structural problem is
done by running MSC Natran finite-element analysis (FEA), either for a 1D beam model
or a 3D wingbox model depending on the desired level of fidelity.
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Figure 3: XDSM diagram of the static aeroelastic OpenMDAO HF/LF solver.

A mesh interpolation scheme that depends on the selected models is used for transfer-
ring loads from the aerodynamic solver to the structural mesh, and displacements from
the structural solver to the aerodynamic mesh. In this work, low-fidelity computations are
performed using both LF structural and aerodynamic models. Likewise, HF computations
are carried out with both HF models.

The fluid-structure interaction problem is solved using an iterative partitioned ap-
proach. This process runs iteratively until convergence is achieved, based on selected
quantities of interest.

3.2 Model description and generation workflow

For both high and low fidelity (HF and LF) simulations, only a half wing is considered,
because a symmetry condition is applied in order to reduce computation time.

3.2.1 High-fidelity (HF) computations

In order to perform HF aerodynamic computations, the DAFOAM [10] solver is used to
run CFD. For now, this aerodynamic code is used to solve steady Navier-Stokes equations.
Airflow is considered viscous, turbulent and compressible. For generating the CFD mesh,
the Pointwise meshing software is used based on the wing geometry in IGS format. The
workflow to be followed in order to obtain HF aerodynamic loads is illustrated in figure
4.

The objective being to perform aerostructural analysis, the previously described aero-
dynamic solver needs to be coupled with a finite-elements analysis (FEA) solver, here the
MSC Nastran software [11] is used. A three-dimensional wingbox finite-elements model
(FEM) is generated as a BDF file. This wingbox shell-model breaks down into several
components, upper and lower skin, ribs, spars and stiffeners. Skin, ribs and spars are
represented using shell elements (CQUAD4), and stiffeners are represented using beam
elements (CBAR). A Python module has been specifically developed to generate this
model based on wing geometrical and material properties inputs. An example of a so
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Figure 4: HF aerodynamic computational workflow.

developed FE mesh for the CRM wing is presented in figure 5.

Figure 5: CRM structural FE model generated using dedicated module.

The wingbox structural models used in this work for uCRM-9.0 and uCRM-13.5 have
been validated by comparing with results from [8]. Interpolation between aerodynamic
and structural meshes is used to transfer loads and displacements. This is performed
thanks to radial basis functions (RBF), using Thin Plate Splines (TPS) approximation
developed in [12].

For now only linear FEA has been considered and tested, but the possibility to easily
switch from a linear to a non-linear structural solver is also implemented for later use.

3.2.2 Low-fidelity (LF) computations

In order to perform LF aerodynamic computations, the AVL code [13] is used to carry
out VLM (Vortex Lattice Method) computations, the corresponding model is generated
through a dedicated Python module based on wing geometrical properties inputs. The
model is defined through a certain number of control points, and associated chords, and
twists. The workflow to be followed in order to obtain LF aerodynamic loads is presented
in figure 6.

This VLM solver is also coupled to MSC Nastran [11]. Contrary to HF computations,
a one-dimensional finite-elements model (FEM) is generated as a BDF file. The wing is
split into a certain number of beam elements (CBAR). Another specific Python module
has been developed to generate this model based on the wing geometrical and material
properties.

The beam elements used in this model correspond to a rectangular beam section. Geo-
metrical parameters, namely height, length, skin and spar thicknesses are the parameters,
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Figure 6: LF aerodynamic computational workflow.

are used as inputs, and corresponding stiffness properties are computed thanks to the
script.

3.3 Optimizer and design variables

In this study, given the size of the problem, we have chosen to use a gradient-free
optimizer. COBYLA optimizer is used for the rest of this work for both HF and LF
optimizations. Relative tolerance of the optimizer is set to 10−3.

The design variables considered in this study are the following: Structural thicknesses
controled using B-splines (4 control points), Aspect ratio and Wing twist controled using
B-splines (4 control points).

B-splines are used here in order to reduce the number of design variables. These are
curves interpolated between a given number of control points which can then be used as
design variables.

Initial values of the geometric design variables are set to the values of initial wing
geometry. As for structural thicknesses, there are set to be decreasing linearly from
20mm to 2mm in the spanwise direction.

We describe here how modifications were applied to the CFD model, more specifically
to the CFD mesh. The initial CFD mesh is deformed using FFD boxes rather than re-
generated to avoid this time-consuming step. A FFD box is a box of control points that
embeds the aircraft surface mesh. Any changes in FFD shape are then mapped onto the
surface mesh.

Modifications of other models are not described as they are simply generated again as
the process is fast and easy to automate.

4 APPLICATION CASES

The material considered in this study for structural models components is Aluminum
alloy 7000 series. Its mechanical properties are presented in 2. Structural elements are
sized to ensure that their maximum Von Mises stress is inferior to the material yield stress
2 with a safety factor of 1.5, corresponding to 280 MPa. Computations are considering
both 1g and 2.5g load cases. The 2.5g extreme load case is the one being used for structural
sizing. To be more specific, the 2.5g load case corresponds to the cruise condition where
lift balances 2.5 times aircraft mass.

Our previous study [14] established that models developed are consistent with reference

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

27



Yoann Le Lamer, Joseph Morlier, Emmanuel Benard and Ping He

Table 2: Material properties.

Parameter Value
Density [kg/m3] 2780
Young’s Modulus [MPa] 73100
Poisson Ratio 0.33
Yield Stress [MPa] 420

studies for uCRM-9.0 and uCRM-13.5 (see [8]).

4.1 Application to a HAR configuration

In this subsection, the optimization method described in section 3 is applied to the
uCRM-13.5 high aspect ratio configuration to evaluate wing mass and examine how in-
duced drag is affected when increasing aspect ratio. The optimization problem is de-
scribed in table 3. Results are then compared to reference data for uCRM-9.0 from [14].
Structural and aerodynamic models are generated based on model chord and twist dis-
tributions, and wingpress geometry developed and presented in [8]. Flight conditions for
each load case are described in table 4.

Table 3: Optimization problem applied to both application configurations (see subsection
3.3).

Function/Variable Bound Comment
minimize CDi

CDiref
+ mass

massref
with CDiref = 0.0250

and massref = 15000.
with respect to Aspect ratio ≤ 28.0

Wing twist [deg.] ≥ -10.0, ≤ 10.0 B-spline parameters
Skin thickness [mm] ≥ 2.0 B-spline parameters
Spar thickness [mm] ≥ 2.0 B-spline parameters

subject to Maximum stress at 2.5g ≤ 280.0 MPa Von Mises stress
CL1g = 0.55
CL2.5g = 0.55*2.5

Table 4: Flight conditions for each load case for MDO on uCRM-13.5 geometry.

Load case 1 g 2.5 g
CL (half-wing) 0.55 0.55*2.5
Mach number 0.85 0.85
Flight altitude [ft] 37,000 37,000

Results of HF and LF optimizations are summarized in table 5. As expected HF mass
evaluation shows a 42.4% increase with regard to uCRM-9.0 reference case. Also, we
observe a greater flexibility of the HAR configuration as wingtip displacement is 90.2%
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Table 5: Results of HF and LF aeroelastic MDO for uCRM-13.5 geometry (uCRM-9.0
reference data from [8]).

Computation High fidelity Low fidelity
1g AoA [deg.] 2.49 1.68
Estimated cruise CDi [drag counts] 76.0 89.0
Baseline CDi (uCRM-9.0) [drag counts] 88.0 97.0
Deviation wrt baseline [%] -13.6 -8.2
Optimized aspect ratio 14.9 15.5
Cruise wingtip displacement [m] 5.02 4.93
Baseline wingtip displacement (uCRM-9.0) [m] 2.64 2.85
Deviation wrt baseline [%] 90.2 73.0
Mass [kg] 15,952 13,865
Baseline mass (uCRM-9.0) [kg] 11,201 9,433
Deviation wrt baseline [%] 42.4 47.0
Number of iterations 11 6
Computation time [s] 17,237 1,548

higher than the one of uCRM-9.0. Finally, it appears that induced drag is reduced by
13.6% for the uCRM-13.5 configuration compared to the uCRM-9.0 reference configura-
tion. Similar trends are observed when performing LF optimization. HF results shows a
wing mass higher than LF results. It is to be noticed that LF optimization runs approx-
imately 11 times faster than HF optimization.

4.2 Application to a HAR SBW configuration

Finally, we will evaluate mass reduction that can be be obtained when adding a strut
to a HAR configuration, here the PADRI configuration. The optimization problem is de-
scribed in table 3. For comparison purposes, we have designed a reference configuration
where we have removed the strut from the original PADRI configuration. This geometry
will be referred as PADRI-WS in the rest of the paper. The structure of the strut consid-
ered in this paper has a rectangular shape, with two parameters for each section, namely
height (length is twice the height) and panel thickness. Flight conditions for each load
case are described in 6.

Table 6: Flight conditions for each load case for MDO on PADRI SBW geometry.

Load case 1 g 2.5 g
CL (half-wing) 0.43 0.43*2.5
Mach number 0.72 0.72
Flight altitude [ft] 30,000 30,000

Results of HF and LF optimizations are summarized in table 7. Wingtip displacement
is reduced by 32.9% with the HF computations. That is consistent with the strut reducing
wing structure flexibility. It can also be observed that the HF mass is significantly reduced
with regard to the PADRI-WS configuration. Indeed, the mass reduction is of 21.2%. This

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

29



Yoann Le Lamer, Joseph Morlier, Emmanuel Benard and Ping He

Table 7: Results of HF and LF aeroelastic MDO for PADRI SBW geometry (PADRI-WS
reference data).

Computation High fidelity Low fidelity
1g AoA [deg.] 1.32 0.94
Estimated cruise CDi [drag counts] 92.0 101.0
Baseline CDi (PADRI-WS) [drag counts] 89.0 97.0
Deviation wrt baseline [%] 3.4 4.1
Optimized aspect ratio 22.2 23.1
Cruise wingtip displacement [m] 1.06 1.43
Baseline wingtip displacement (PADRI-WS) [m] 1.58 1.95
Deviation wrt baseline [%] -32.9 -26.7
Mass [kg] 9,878 9,102
Baseline mass (PADRI-WS) [kg] 12,541 11,982
Deviation wrt baseline [%] -21.2 -24.0
Number of iterations 14 9
Computation time [s] 22,428 1,215

confirms the mass reduction potential of SBW configurations. Finally, induced drag is
similar when compared to the PADRI-WS baseline configuration. Indeed, the deviation is
below 5%. This is expected as the contribution of the strut to total lift is not significant.
Similar trends are observed when performing LF optimization. HF results shows a wing
mass higher than LF results. It is to be noticed that LF optimization runs approximately
18 times faster than HF optimization.

5 RESULTS

The comparisons with baseline values for both application cases are presented in figures
7, 8 and 9. Also, we have confirmed the expected result that induced drag is reduced when
increasing the aspect ratio as displayed in figure 8. Finally, the performed optimizations
have exemplified the mass reduction potential of a SBW configuration.

Figure 7: Synthesis of wing mass values for each configuration of interest (HF in green,
LF in blue, HF baseline in grey).
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Figure 8: Synthesis of induced drag values for each configuration of interest (HF in green,
LF in blue, HF baseline in grey).

Figure 9: Synthesis of wingtip displacement values for each configuration of interest (HF
in green, LF in blue, HF baseline in grey).
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6 CONCLUSIONS

This work has demonstrated the aeroelastic optimization capabilities of our in-house
framework applied to the HAR version of the NASA CRM, the uCRM-13.5 configuration
as well as to the strut-braced PADRI configuration. This approach is effective for the two
levels of fidelity mentioned in this paper.

In order to be able to evaluate the interest of a large number of configurations at
preliminary design stage, it is necessary to make computation time more affordable. To
this purpose, we are planning to use a multifidelity optimization approach that would
allow us to mitigate computation costs. This is deemed to be a promising approach as
the presented optimizations show that LF simulations run more than 10 times faster than
HF simulations. The first step could be to use a strategy close to the one we described in
[15], and later we would use MFEGO methodology as presented in [16].
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Abstract. Many industrial processes and product performance are affected by uncertain-
ties that can arise from different factors, such as dimensional tolerances, manufacturing
errors, and fluctuations in operating conditions. In engineering design problems, the un-
certainties of the design parameters are transferred to the system responses. In these
cases it would be better to describe both the parameters and the responses by statistical
distributions rather than single deterministic values. To deal with problems affected by
several uncertainties and expensive simulation time, e.g. CFD analyses, it is particularly
important to develop methodologies that are at the same time accurate and that rely on a
limited number of sample evaluations.
In this paper, we propose an Uncertainty Quantification (UQ) method based on non-
intrusive Snapshot Proper Orthogonal Decomposition (POD) Reduced Order Model (ROM)
and Polynomial Chaos Expansion (PCE) to efficiently compute the uncertainty propaga-
tion on a vectorial field of interest due to uncertain input parameters. The method is
applied to the CFD problem of the flow over an airfoil with parameterized uncertain angle
of attack and inflow velocity to estimate the uncertainties of the pressure field in each
mesh cell.

Keywords: Industrial Design, Proper Orthogonal Decomposition, Reduced Order Model,
Uncertainty Quantification, Polynomial Chaos Expansion
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1 INTRODUCTION

Most of the engineering problems are affected by uncertainties due to various factors
such as the design specifications and the operating conditions of the system. Uncertainties
in the input parameters lead to uncertainties in the responses or output variables, and
thus to uncontrolled variability in the performance of the system. Considering the input
variables as random variables that vary with a certain statistical distribution, the ideal
goal is to determine the resulting distribution of the output variables.

Uncertainty Quantification (UQ) is the process of assessing and characterizing the
statistical properties of the output parameters of a system due to the stochasticity of its
input parameters. Although UQ can be used to determine the probability distribution
function (PDF) of the output variables, in industrial cases it is often sufficient to estimate
the first and second statistical moments, i.e., the mean and standard deviation values.
Polynomial Chaos Expansion (PCE) [1] is one of the most efficient and accurate techniques
to estimate these two quantities.

To deal with the uncertainties in complex systems with many input and output vari-
ables, even if an efficient UQ method is used, the required computational resources can be
prohibitive due to the high cost in terms of model simulation time. Model Order Reduc-
tion (MOR) is a technique for reducing the computational complexity of mathematical
models in numerical simulation by reducing the degrees of freedom associated with the
model. The resulting model, commonly called Reduced Order Model (ROM), is an ap-
proximation of the original model. There are many approaches to obtain a ROM such
as the Snapshot Proper Orthogonal Decomposition (POD) method [2, 3], on which this
paper is based.

UQ techniques can be applied to many possible scenarios and applications. Without
loss of generality, this paper is foucsed on the use case problem of the flow over a NACA
0012 airfoil with uncertain angle of attack and inflow velocity. Section 2 presents the
technical details of the selected use case and the involved tools. Section 3 introduces the
theoretical background of the PCE and the Snapshot POD, and section 4 describes how
they can be combined to develop different UQ methods. Finally, section 5 compares the
results obtained by applying the various UQ techniques to the test case itself.

2 USE CASE AND FRAMEWORK

The reference case chosen for this paper is the numerical simulation of an airfoil with
a variable angle of attack and inflow velocity. The CFD model, implemented in Open-
FOAM, is based on the 2DN00: 2D NACA 0012 Airfoil Validation Case from the NASA
Langley Turbulence Modeling Resource [4].
The numerical domain, shown in Fig.1 and Fig.2, is characterized by the following prop-
erties:

• Chord length of the airfoil: c = 1.0 [m]

• Domain longitudinal direction: x

• Domain vertical direction: y

• Domain spanwise direction: z

• Domain dimensions: (x, y, z) = (985.5, 1015.6, 1.0) [m]
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• Mesh type: hexahedral cells

• Mesh cells number: m = 230529, (mx,my,mz) = (257, 897, 1)

Figure 1: OpenFOAM mesh

Figure 2: OpenFOAM mesh details

The physical model is characterized by:

• Angle of attack nominal value: α = 4 [deg]

• Mach number nominal value: M = 0.6

• Kinematic viscosity of fluid: ν = 1.50833× 10−5 [m2s−1]

• Speed of sound: = 340.29 [ms−1]

• Streamwise far-field flow speed: Uinf = M Us = 204.174 [ms−1]
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• Longitudinal direction far-field flow speed: Ux = Uinf cos(α) = 203.67 [ms−1]

• Uy = Uinf sin(α) = 14.24 [ms−1]

• Reynolds number based on chord length: Re = Ux c ν
−1 ≃ 13.5× 106 [ms−1]

• Turbulence model: Spalart-Allmaras

The design variables α and M are statistically distributed random variables and the
pressures in each j− th mesh cell pj(α,M) with j = 1, . . . ,m are the uncertain dependent
variables. The goal is to estimate the mean µpj and standard deviation σpj to evaluate
the mean and standard deviation pressure fields

µp =
[
µp1 · · · µpm

]
(1)

σp =
[
σp1 · · · σpm

]
(2)

The fields can be visualized, as in Fig.3, to identify the model regions where the effect of
the design variables uncertainties is higher.

Figure 3: Mean and standard deviation pressure fields

Let’s consider α and M distributed according to Gaussian PDF respectively charac-
terized by the following means and standard deviations

µα = 4 [deg] σα = 0.1 [deg]
µM = 0.6 σM = 0.01

(3)

It is possible to generate n pseudo-random samples around the mean values of the input
variables following the prescribed distributions Fig.4 and to compute for each of them the
corresponding p field by the CFD analysis.
Considering the i− th sample with i = 1, . . . , n:

• αi and Mi are the values assumed by the variables α and M ,

• pj(αi,Mi) with j = 1, . . . ,m is the pressure in the j − th mesh cell Fig.5,
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(a) Mean values (b) Pseudo-random samples

Figure 4: Design variables distributions

Figure 5: Pressure in the j − th mesh cell pj(αi,Mi) with i = 1, . . . , n

• p(αi,Mi) =
[
p1(αi,Mi) · · · pm(αi,Mi)

]
is the pressure field in every mesh cell and is

named i− th snapshot.

The n corresponding snapshots are collected in the n×m snapshots matrix

Sp =



p(α1,M1)

...
p(αn,Mn)


 =



p1(α1,M1) · · · pm(α1,M1)

...
. . .

...
p1(αn,Mn) · · · pm(αn,Mn)


 (4)

The snapshots computations have been automated through modeFRONTIER, software
from ESTECO, specialized in process automation and optimization which allows to create
workflows that integrate external software packages and programming languages. The
workflow, shown in Fig.6, integrates the OpenFOAM model through the application node
EasyDriver. It repeats the CFD analysis and computes the performance of the airfoil
several times by changing the values of the Mach number and of the angle of attack.
The design variables are represented by the input parameter nodes M and angle, the
airfoil performance is represented by the output parameter nodes cl, lift coefficient, and
cd, drag coefficient. At run time, the values of the design variables are used to evaluate
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the far-field velocity along the x- and y-axes and the lift and drag directions provided
as boundary conditions to the CFD analysis. The EasyDriver modifies the OpenFOAM
model files accordingly, submits the CFD run, and retrieves the lift and drag coefficients
values from the post-processing files. The process is automatically iterated to evaluate
multiple designs by changing the design variables values and updating the lift and drag
coefficients values.
The flexibility of EasyDriver allows to run the external software on a local machine as
well as to distribute the computations to remote resources available in the network. In
this specific case, the CFD environment, i.e. OpenFOAM, has been packaged in a Docker
container that is started for each CFD execution request. Running the analysis in a
container allows to easily run OpenFOAM on different operating systems using the same
commands and to fully exploit the parallelization capabilities of modeFRONTIER, which
can evaluate multiple designs at the same time, i.e. multiple sets of values of the design
variables, running multiple OpenFOAM instances even on a local machine.

Figure 6: modeFRONTIER process automation workflow

3 THEORETICAL BACKGROUND

3.1 The Polynomial Chaos Expansion

Consider a random variable y, defined as a function f of a set of s independently
distributed random variables x(1), . . . , x(s)

y = f(x(1), . . . , x(s)) (5)
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The general idea of PCE methodology is to represent y as a series of a family of polyno-
mials, referred as chaos. The statistical moments can be analytically computed once the
coefficients of the series are estimated. The maximum degree of the series expansion is
called chaos order.

If y depends on only one uncertain variable y = f(x) and x is distributed according
to a probability density function w(x), then there exists a special family of orthogonal
polynomials

ψ = {ψ0(x), ψ1(x), . . . , ψ10(x), . . . } (6)

such that the w–scalar product is

⟨ψi(x), ψj(x)⟩w =

∫
ψi(x)ψj(x)w(x)dx = 0 whenever i ̸= j. (7)

Assume that f(x) is a linear combination of this family

f(x) =
∞∑

d=0

βdψd(x) (8)

It is possible to demonstrate, by exploiting the orthogonality condition, that the mean
and the standard deviation of y are

µy = β0 (9)

σ2
y =

∞∑

d=1

β2
d ∥ψd(x)∥2w (10)

where the w(x)–norm is

∥ψd(x)∥2w = ⟨ψd(x), ψd(x)⟩w =

∫
ψd(x)ψd(x)w(x)dx (11)

In particular, if x is standard normal and w(x) = e−0.5x2√
2π

is Gaussian, the family of
orthogonal polynomials is formed by the Hermite polynomials:

ψ0(x) = He0(x) = 1,

ψ1(x) = He1(x) = x,

ψ2(x) = He2(x) = x2 − 1,

ψ3(x) = He3(x) = x3 − 3x,

...

ψ10(x) = He10(x) = xψ9(x)− 10ψ8(x),

...

(12)

Their w(x)–norm is
∥ψd(x)∥2w = d! (13)

In multidimensional problems, the multivariate chaoses are written considering the ten-
sorial products of the polynomials corresponding to the distributions of each individual
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variable. In the two dimensional case y = f(x(1), x(2)) with two identical normal distribu-
tions, the family of orthogonal polynomials orthogonal associated to the joint probability
distribution w1(x

(1))⊗ w2(x
(2)) starts with:

ψ0(x
(1), x(2)) = 1,

ψ1(x
(1), x(2)) = He1(x

(1)),

ψ2(x
(1), x(2)) = He1(x

(2)),

ψ3(x
(1), x(2)) = He2(x

(1)),

ψ4(x
(1), x(2)) = He1(x

(1))He1(x
(2)),

ψ5(x
(1), x(2)) = He2(x

(2)),

...

(14)

and the previous equations Eq.(8) Eq.(9) Eq.(10) become respectively

y = f(x(1), x(2)) =
∞∑

d=0

βdψd(x
(1), x(2)) (15)

µy = β0 (16)

σ2
y =

∞∑

d=1

β2
d

∥∥ψd(x
(1), x(2))

∥∥2
w

(17)

In practice, the chaos expansion is usually truncated at a fixed chaos order as

y = f(x(1), x(2)) ≃
t∑

d=0

βdψd(x
(1), x(2)) (18)

µy ≃ β0 (19)

σ2
y ≃

t∑

d=1

β2
d

∥∥ψd(x
(1), x(2))

∥∥2
w

(20)

Thus, writing a 2-variable polynomial chaos of order 2 requires 6 polynomials (t = 5) as
shown in Eq.(14).

The estimation of the statistical moments is given by the approximation of the co-
efficients βd of the polynomial chaos expansion. A possible strategy to determine the
coefficients βd consists in a nonlinear regression, a procedure called chaos collocation
[1]. The βd are chosen in order to minimize the sum of the squared differences between
f(x(1), x(2)) and the chaos expansion, over a given set of points.

3.2 The Snapshot Proper Orthogonal Decomposition

The Snapshot POD algorithm is preferred to the so called direct method because it is
faster when the number of the mesh cells m is greater than the number of snapshots n,
as shown in [2].
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From Eq.(4), it is possible to obtain the snapshot matrix P of the pressure fluctuations
by removing the average pressures from their respective columns

P =



p1(α1,M1)− p̄1 · · · pm(α1,M1)− p̄m

...
. . .

...
p1(αn,Mn)− p̄1 · · · pm(αn,Mn)− p̄m


 =

=



p′1(α1,M1) · · · p′m(α1,M1)

...
. . .

...
p′1(αn,Mn) · · · p′m(αn,Mn)


 =

=



p′11 p′12 · · · p′1m
...

. . . . . .
...

p′n1 p′n2 · · · p′nm




(21)

with

p̄j =

∑n
i=1 pj(αi,Mi)

n
with j = 1, . . . ,m (22)

It is possible to evaluate the n× n correlation matrix

Cs =
PP T

n− 1
=

1

n− 1




∑m
j=1 p

′
1j

2 · · · ∑m
j=1 p

′
1jp

′
nj

...
. . .

...∑m
j=1 p

′
njp

′
1j · · ·

∑m
j=1 p

′
nj

2


 (23)

and its n eigenvalues and n eigenvectors collected respectively in the matrices λs and As

λs,As = eig(Cs) (24)

λs =
[
λ1 · · · λn

]
(25)

As =
[
a1 · · · an

]
=



a11 · · · a1n
...

. . .
...

an1 · · · ann


 =



a1(α1,M1) · · · an(α1,M1)

...
. . .

...
a1(αn,Mn) · · · an(αn,Mn)


 (26)

As a convention, the eigenvalues are ordered from the largest to the smallest. Conse-
quently, the first eigenvector a1 corresponds to the largest eigenvalue λ1 and so on and
so forth. The element ak(αi,Mi) of the As matrix is referred as the k − th coefficient of
the i− th snapshot with k = 1, . . . , n and i = 1, . . . , n. The eigenvectors of Cs are named
parameter modes. The m× n matrix Φs is obtained, by projecting the snapshot matrix
P onto each orthogonal parameter mode

Φs = P TAs =




p′11 · · · p′n1

p′12
. . . p′n2

...
. . .

...
p′1m · · · p′nm






a11 · · · a1n
...

. . .
...

an1 · · · ann


 =




ϕ11 · · · ϕn1

ϕ12
. . . ϕn2

...
. . .

...
ϕ1m · · · ϕnm


 =

[
ϕ1 · · · ϕn

]

(27)
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The matrix Φs contains n spatial coefficients ordered from the strongest to the weakest.
The original snapshot matrix P can be reconstructed from the spatial coefficients and
parameter modes as

Φs = P TAs ⇒ P T = ΦsAs
−1 = ΦsAs

T ⇒ P = AsΦs
T (28)

or, written explicitly, as

P = AsΦs
T =



a11 · · · a1n
...

. . .
...

an1 · · · ann






ϕ11 ϕ12 · · · ϕ1m
...

. . . . . .
...

ϕn1 ϕn2 · · · ϕnm


 =

=



a11ϕ11 + · · ·+ a1nϕn1 · · · a11ϕ1m + · · ·+ a1nϕnm

...
. . .

...
an1ϕ11 + · · ·+ annϕn1 · · · an1ϕ1m + · · ·+ annϕnm


 =

=



a11ϕ11 · · · a11ϕ1m

...
. . .

...
an1ϕ11 · · · an1ϕ1m


+ · · ·+



a1nϕn1 · · · a1nϕnm

...
. . .

...
annϕn1 · · · annϕnm


 =

=



a11
...
an1



[
ϕ11 · · · ϕ1m

]
+ · · ·+



a1n
...
ann



[
ϕn1 · · · ϕnm

]
=

=
n∑

k=1



a1k
...
ank



[
ϕk1 · · · ϕkm

]
=

=
n∑

k=1

P̃k

(29)

The snapshot matrix P is expressed as the sum of the contributions from the n modes.
It is possible to get an approximation of the snapshot matrix P by truncating the series
of Eq.(29) to consider only the contributions of the most important modes. Usually, the
importance of the modes can be retrieved by computing their energy contribution as

1∑n
k=1 λk

[
λ1 · · · λn

]
=
[
e1 · · · en

]
(30)

The POD is used to build a ROM capable of predicting the pressure field p(α,M) for
new values of α and M not included in the n pseudo-random samples initially generated.
Each component of P of Eq.(29) represents the pressure fluctuation in the j − th cell for
the i− th sample and can be written as

p′ij =
n∑

k=1

aikϕkj with i = 1, . . . , n and j = 1, . . . ,m (31)

or as a function of α and M as

p′j(a1(α,M), a2(α,M), . . . , an(α,M)) =
n∑

k=1

ak(α,M)ϕkj with j = 1, . . . ,m (32)
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To make a prediction of p′j for a new set of values of α and M , it is sufficient to estimate,
using any regression model, the new values of the n coefficients ak(α,M).
The pressure in the j − th cell for a new sample is consequently

pj(α,M) = p′j(a1(α,M), a2(α,M), . . . , an(α,M)) + p̄j =
n∑

k=1

ak(α,M)ϕkj + p̄j (33)

4 UNCERTAINTY QUANTIFICATION METHODS

The Snapshot POD and the PCE can be used alone or in combination to develop
various UQ methods that allow estimating the statistical moments, the mean µpj and the
standard deviation σpj , of the pressure in each j−th mesh cell pj(α,M) with j = 1, . . . ,m
and to obtain the vectors µp and σp defined in Eq.(1) and in Eq.(2).

4.1 Direct method

The Direct method is a classic UQ technique that requires neither the POD nor the
PCE described in section 3.
The j − th column of Eq.(4) contains the n evaluated values of the pressure in the j − th
mesh cell pj(α1,M1), . . . , pj(αn,Mn) with j = 1, . . . ,m. It is possible to directly compute
the desired mean µpj and standard deviation σpj as

µpj =

∑n
i=1 pj(αi,Mi)

n
(34)

σpj =

√√√√ 1

n− 1

n∑

i=1

(pj(αi,Mi)− µpj)
2 (35)

Depending on the algorithm used to generate the n samples (α1,M1), . . . , (αn,Mn) dis-
tributed according to the prescribed probability density functions, the accuracy of the
moment estimation changes [1]. When the Monte Carlo algorithm is used, many samples
are needed to obtain reliable results. It can be shown that by using Latin Hypercube,
Sobol, or other algorithms, fewer samples are required to provide better results. If a
sufficient number of samples is chosen, it is possible to consider the moments estimated
by the Direct method as reference values, especially when the analytical solutions are not
available.

4.2 PCE method

The PCE method relies only on the concepts described in section 3.1. Remembering
Eq.(18), the uncertain pressure in the j − th mesh cell pj(α,M) with j = 1, . . . ,m as a
function of the uncertain variables α and M can be written as

pj(α,M) ≃
t∑

d=0

βdψd(α,M) (36)

Consequently the mean µpj and the standard deviation σpj are estimated as

µpj ≃ β0 (37)

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

44



Luca Battaglia, Federico Carlini, Alberto Clarich and Rosario Russo

σ2
pj
≃

t∑

d=1

β2
d ∥ψd(α,M)∥2w (38)

To evaluate the moments in the j−th mesh cell, it is necessary to determine the coefficients
βd of the polynomial chaos expansion through the chaos collocation, i.e. a nonlinear
regression. It is necessary to repeat the chaos collocation m times, one for each mesh cell.

4.3 ROM method

The ROM method relies only on the concepts described in section 3.2. It is possible

(a) Pseudo-random virtual samples (b) Pressure in the j − th mesh cell by ROM

Figure 7: ROM method sampling

to generate other nvirt virtual pseudo-random samples around the mean values following
the prescribed distributions Fig.7a, with nvirt ≫ n. For each ivirt − th virtual sample
with ivirt = 1, . . . , nvirt, it is possible to estimate the pressure field p(αivirt ,Mivirt) =[
p1(αivirt ,Mivirt) · · · pm(αivirt ,Mivirt)

]
using the Reduced Order Model Fig.7b. For each

j− th mesh cell with j = 1, . . . ,m the mean µpj and standard deviation σpj are computed
as

µpj =

∑nvirt

i=1 pj(αivirt ,Mivirt)

nvirt

with j = 1, . . . ,m (39)

σpj =

√√√√ 1

nvirt − 1

nvirt∑

i=1

(pj(αivirt ,Mivirt)− µpj)
2 with j = 1, . . . ,m (40)

The moments are computed exactly as in the Direct method. However, since nvirt ≫ n,
the results are expected to be more accurate.

4.4 POD method

The POD method relies only on the concepts described in section 3.2. Eq.(33) expresses
the uncertain pressure in the j− th mesh cell pj(α,M) with j = 1, . . . ,m as a function of
the n uncertain POD coefficients ak(α,M). The desired mean µpj and variance σ2

pj
can
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be computed as

µpj = µp′j + p̄j =
n∑

k=1

µakϕkj + p̄j with j = 1, . . . ,m (41)

σ2
pj

= σ2
p′j

=
n∑

k=1

σ2
ak
ϕ2
kj with j = 1, . . . ,m (42)

due to the error propagation of the uncorrelated variables ak(α,M). It is possible to
analytically evaluate the mean µak and the standard deviation σak of the POD coefficients
ak(α,M) as

µak =

∑n
i=1 ak(αi,Mi)

n
(43)

σ2
ak

=

∑n
i=1(ak(αi,Mi)− µak)2

n− 1
(44)

It is possible to truncate the series of Eq.(33) and Eq.(41)-Eq.(44) to keep only the modes
with the highest energy contributions.

4.5 POD PCE method

The POD PCE method combines the Polynomial Chaos Expansion and the Snapshot
Proper Orthogonal Decomposition described respectively in section 3.1 and 3.2. As in the
POD method, the uncertain pressure in the j−th mesh cell pj(α,M) with j = 1, . . . ,m as
a function of the n uncertain POD coefficients ak(α,M) is written as in Eq.(33), eventually
retaining only the important modes by truncating the series. Similarly, the pressure mean
µpj and variance σ2

pj
are written as in Eq.(41) and Eq.(42). To compute the moments, it is

sufficient to estimate the mean µak and the standard deviation σak of the POD coefficients
ak(α,M). Remembering Eq.(18), ak(α,M) can be expressed as

ak(α,M) ≃
t∑

d=0

βdψd(α,M) (45)

and the mean and the variance as
µak ≃ β0 (46)

σ2
ak
≃

t∑

d=1

β2
d ∥ψd(α,M)∥2w (47)

To evaluate the moments in every mesh cell, it is necessary to determine the coefficients
βd of the polynomial chaos expansion by the chaos collocation, i.e. a nonlinear regression,
for each POD coefficient ak(α,M). The chaos collocation is performed n times or less,
depending on the number of retained modes. The method is more efficient than the PCE
method, which performs a nonlinear regression m times, one for each mesh cell.
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5 UNCERTAINTY QUANTIFICATION METHODS COMPARISON

By choosing one of the previously described UQ methods and generating an appropriate
number of n pseudo-random samples (α1,M1), . . . , (αn,Mn) around the means of the
design variables α and M , it is possible to estimate the mean µpj and the standard
deviation σpj of the pressure in each j − th mesh cell pj(α,M) with j = 1, . . . ,m and
reconstruct the mean µp and standard deviation σp pressure fields shown in Fig.8. The
region where the effect of design variable uncertainties is greater, i.e. where the standard
deviation pressure field has the highest values, is near the leading edge of the airfoil. In
the far field, near the inlet of the CFD domain, the values of the standard deviation
pressure field are lower.

Figure 8: Pressure mean and standard deviation fields

To accurately estimate the fields µp and σp, each UQ method requires a different
number of n pseudo-random samples, i.e. a different number of CFD simulations. By
progressively increasing the number n of samples, it is possible to compare the values
provided by each UQ method for the mean and standard deviation of the pressure in a
given mesh cell.
The accuracy of the various UQ methods, as shown for the Direct one, also depends on
the algorithm used to generate the n samples distributed accordingly to the prescribed
probability density functions. A comparison of the different sampling strategies is beyond
the scope of this study.

Two representative mesh cells, one near the leading edge of the airfoil and one in the
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Figure 9: Comparison among UQ methods of convergence of mean (top) and standard
deviation (bottom) of pressure near the airfoil leading edge

far field, have been selected for the comparison. Fig.9 shows the convergence of the mean
and standard deviation values evaluated in the cell near the airfoil, Fig.10 shows the con-
vergence in the far field cell. The computational time required to compute the mean and
standard deviation pressure fields is reported in Fig.11.

The direct method is reliable, but requires many samples to be accurate. Especially
near the leading edge, the convergence is not achieved even when more than 550 designs
are evaluated.

The PCE method is very accurate and requires only a few CFD snapshots to converge
near the leading edge where the standard deviation value is relevant. The method re-
quires more samples in the far field, Fig.10, where the pressure values are lower and more
uniform among the snapshots. The technique requires the PCE to be computed for each
mesh cell; the computational time can increase dramatically with the number of mesh
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Figure 10: Comparison among UQ methods of convergence of mean (top) and standard
deviation (bottom) of pressure in far field cell

cells. It is recommended to perform a convergence study by changing the order of the
polynomial chaos when using the PCE method. The main drawback of the PCE tech-
nique is that the number of polynomial coefficients scales more than exponentially with
the number of uncertain input variables and the chaos order. The number of coefficients
of the polynomial expansion of order o involving nvar variables is given by

(nvar + o)!

nvar!o!
(48)

The number n of samples must be at least equal to or greater than the number of coef-
ficients to perform the chaos collocation. This means that it may require many samples,
i.e. many CFD snapshots, if there are many uncertain input variables. It is possible
to improve this behavior by adopting the Adaptive Sparse Polynomial Chaos Expansion
method [5].
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Figure 11: Computational time comparison among UQ methods

The ROM method is accurate both near the leading edge and in the far field and quickly
converges. The accuracy is similar to the PCE method if enough nvirt virtual samples
are estimated to compute the mean and the standard deviation of the pressure. The
computational time required is longer. Fig.12 shows the effect of the number of virtual
samples on the accuracy and on the time. It is recommended to perform a convergence
study by changing the number of virtual samples when using the ROM method.

The POD method provides exactly the same results as the Direct method in terms of
accuracy. It introduces only a small runtime overhead compared to the Direct method
itself if are retained only the most important modes.

The POD PCE method is similar to the ROM approach in terms of accuracy and
takes almost the same amount of time as the POD method if are retained only the most
important modes. Relying on PCE, the method could require more samples if the number
of uncertain input variables is high. Again, it could be improved by using the Adaptive
Sparse Polynomial Chaos Expansion technique.

In the airfoil use case, since their cumulative energy contribution is close to 1, only
the first two modes are considered important modes. Fig.13 shows the effect of the
number of modes on the accuracy and on the computational time. Both POD and POD
PCE considering only the two important modes are at least as accurate as the methods
considering all modes, but the computational time advantage is significant.
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Figure 12: Convergence of mean (top) and standard deviation (center) of pressure near
the airfoil leading edge evaluated by ROM method and computational time (bottom)
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Figure 13: Convergence of standard deviation of pressure near the airfoil leading edge
(top) and in a far field cell (center) evaluated by POD and POD PCE methods and
computational time (bottom)

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

52



Luca Battaglia, Federico Carlini, Alberto Clarich and Rosario Russo

6 CONCLUSIONS

An efficient POD PCE uncertainty quantification methodology based on non-intrusive
Snapshot Proper Orthogonal Decomposition and Polynomial Chaos Expansion has been
developed. It inherits the advantages of both POD and PCE approaches.
Several other techniques based only on PCE or ROM have been proposed during this
study and their main differences, strengths and weaknesses with respect to the POD PCE
have been highlighted. Considering a mesh with millions of cells, the POD PCE method
is more convenient than the PCE method. If the number of uncertain variables is not
excessive, it requires less computational time than the ROM method to provide results
with similar accuracy. In the other cases, the PCE or ROM methods can still provide
good performance and are easier to implement.
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Abstract A computational model of a wing with octahedron cellular internal structure 
designated for a flying car has been proposed. The wing model is subjected to variation 
by around 20 aerodynamic and structural design variables. The objective is to find the 
best combinations of design variables that maximize the aerodynamic performance and 
minimize the structural weight, subjected to maximum allowable stress, and static and 
dynamic aeroelastic instability constraints, including divergence and flutter speeds. The 
lifting-line theory for low-speed subsonic flight has been adopted as the aerodynamic 
model, while the structural and aeroelastic properties were calculated using finite element 
(FEM) software package MSC Nastran. By incorporating the aerodynamic, structural and 
aeroelastic simulations with an algorithm called Thompson Sampling Efficient 
Multiobjective Optimization (TS-EMO) developed by E. Bradford et. al. [1], a two-
dimensional Pareto front depicted by several points demonstrating the compromisation 
between aerodynamic and structural weight has been obtained. The combinations of 
design variables behind these points provide Pareto-optimal design ideas of the flying car 
wing. It is anticipated that the Pareto-optimal designs could provide ideas about how a 
structurally optimal geometry of octahedron cells should look. Similar design and 
optimization methods might be implemented to other novel designs of wing internal 
structures. 
Keywords: Thompson Sampling Efficient Multiobjective Optimization (TS-EMO); cellular 
structured wings; multiobjective optimization (MOO); multidisciplinary optimization (MDO); 
flying cars 
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1. INTRODUCTION 
In recent years, the morphing wing concept attracted the attention from aircraft design 
professionals. Compared to the conventional aircraft wings, the morphing wings would be 
more flexible to achieve a wider range of performance. Some researchers develop morphing 
wings by replacing part of the wing internal structure with more flexible metamaterials, say 
Yokozeki et. al. [2] developed a variable camber morphing airfoil with flexible corrugated 
structure near the trailing edge and obtained a better aerodynamic performance. Some 
researchers develop bio-inspired morphing wings, say Matloff et. al. [3] developed a soft 
morphing wing with feathers imitating the actuation mechanism of real birds. A 
comprehensive review on evolution of the morphing wings can be found from Li et. al.’s 
paper [4]. 
Among different morphing-wing concepts, the morphing wing with cellular structures is one 
of the research hotspots. There is an abundant amount of research on properties of cellular 
structures and metamaterials, and some researchers attempted to construct wings with cellular 
structures. Tsushima et. al. [5] constructed a wing with NACA 0010 airfoil with simple-cubic 
(SC) structure and investigated the mechanical properties of the wing by computational 
homogenization method, which has been verified by experimental testing. Jenett et. al. [6] 
developed a small octahedron-cellular structured wing by assembling discrete building-block 
elements, which can exhibit torsional morphing. Zhang et. al. [7] developed a wing 
computational model with octahedron structure by defining the density of the internal 
octahedron structures at different planform locations as design variables. Cramer et. al. from 
MIT and NASA [8] developed a large-scale multi-layer octahedron-cellular morphing wing of 
approximately 4-m span which achieved high stiffness at ultralight densities and an increased 
aerodynamic efficiency. Moon et. al. [9] manufactured a lightweight Unmanned Aerial 
Vehicle (UAV) wing structure with 3D printing technology. 
Despite the arduous work by previous research, the current literature is still far from 
exploiting the potential of vast variety of cellular structures on aerospace applications. In 
particular, to the best of the author’s knowledge, it is lack of literature in terms of 
multidisciplinary optimization (MDO) of both aerodynamic and structural objectives for 
aircraft wings with cellular internal structures. Although some literatures in the previous 
paragraph attempted to build some wings with cellular internal structures either 
computationally or realistically, the practicability and optimality of these designs remain 
questionable due to the lack of data and design varieties. 
In this paper, a computational wing finite element model with octahedron internal structure 
which is specifically designed for a flying car application is proposed. The flying car chosen 
is the SD-05 prototype from SkyDrive Inc. in Japan [10]. The SD-05 prototype is a battery 
electric flying vehicle with Maximum Take-Off Weight (MTOW) of 1100 kg. The officially 
announced operational flight range is 10 km. Due to its drone-like design, although it has the 
Vertical Take-Off and Landing (VTOL) capability, the energy dissipation during the steady-
level cruise would be as high as helicopters, in which the thrust of the rotors are mainly used 
for overcoming the whole weight of the vehicle. If a morphing wing could be expanded when 
the flying car enters a reasonably sparse air space at certain altitude, it would enable the flying 
car to glide in the air like a conventional civil aircraft. By adjusting the direction of the 
propellor, the thrust could be used just to overcome the gliding drag, greatly increasing the 
range of the flight.  
It is believed that the flying car would become a more popular and cost-effective Urban Air 
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Mobility (UAM) product with an increased range of flight. For example, the distance between 
the center of Tokyo and the Tokyo Narita International Airport (NRT) is around 60 km. It is 
not even appropriate to use the 10-km range flying car to catch an urgent flight. The gliding 
wing of a flying car could be a game changer that enables more flexible and convenient intra- 
and inter-city trips. 
This paper serves as an early phase research on the MDO of novel morphing wings with 
cellular / lattice internal structures for flying cars. Although we use “morphing” to describe 
the wing, the evaluation of objective functions and the analysis itself does not consider the 
active morphing of the wing. The term “morphing” is defined in the sense that the wing is 
ideally being contracted (folded up) when the flying car is situated in crowded urban low-
altitude environment where expansion of the wing is not feasible.  
It is worthy to note that the unconventionality of the internal structural design often means 
that it is difficult to find low-cost analytical solution to structural and aeroelastic 
characteristics. In this paper, the structural and aeroelastic properties of the proposed wing 
design was carried out by commercial FEM package MSC NASTRAN 2019. In terms of 
aerodynamic performance, we assume the flying car, hence the proposed morphing wing, is to 
be operated under subsonic incompressible flow (Ma ≤ 0.3). Hence, it is not necessary to 
introduce a sweep angle as one of the design parameters, and it would be plausible to use 
Prandtl’s Lifting Line Theory (LLT) to predict the lift coefficients as well as to account for 
total drag with reasonable fidelity. The aerodynamic characteristics of the airfoils of the 
proposed wing is evaluated at several spanwise stations as suggested by LLT using the 2D 
version of the Computational Fluid Dynamics (CFD) solver UTCart developed by Imamura et. 
al. [11] [12]. The scope of this paper will be limited to wing optimization under steady level 
flight. It is anticipated that extra energy would be required in the take-off and landing phases 
of the flight, which could lead to a shortened practical range of flight.  
Since the evaluation of the aerodynamic, structural and aeroelastic characteristics of the 
proposed wing design require FEM and CFD software packages, the evaluation of each 
design configuration would be time consuming. If we take the design variables of the 
proposed wing as the input variables of the aerodynamic and structural objective functions, 
running the simulation using FEM and CFD software package is a time-consuming costly 
process of evaluating the objective functions. The objective functions are de facto black-box 
functions since we have limited idea about how the aerodynamic and structural characteristics 
would be correlated with the design input variables. Bayesian Optimization (BO) is chosen as 
the method of solving this optimization problem owning to the costly and black-box feature of 
the objective functions [13]. In particular, the Thompson-Sampling Efficient Multiobjective 
Optimization (TS-EMO) Bayesian Optimization algorithm developed by E. Bradford et. al. 
[1] comes to our particular interest due to its open-source nature and the examples of 
successful implementations outside aerospace industry [14] [15]. 
This paper will be structured as follows. Section 1 described the development of morphing 
wings with lattice structures, their applications in aerospace applications, the proposed usage 
of lattice structures in flying car applications and the combination of software packages used. 
Section 2 will elaborate on the problem of optimization, including the definition and 
construction of the objective functions and constraint functions. The design variables of the 
3D wing will be introduced, in which the airfoil geometry and internal arrangement and lining 
of the nonuniform octahedron cells will be detailed. Section 3 describes the interconnection 
between all the software packages used, namely MATLAB, 2D UTCart CFD, MSC 
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NASTRAN 2019 and TS-EMO. Section 4 shows the results of the optimization problem. In 
particular, a Pareto-front demonstrating the compromisation between aerodynamic and 
structural objective functions has been obtained. Section 5 summarizes the paper and 
describes the future works.  
 
2. OPTIMIZATION PROBLEM AND MODEL PARAMETERIZATION  
2.1. Definition of Optimization Problem 
We aim to design a morphing wing with an octahedron internal structure designated for a 
flying car prototype as described in Section 1. The optimization problem is to maximize the 
range of the vehicle under steady level flight, while minimizing the weight of the wing 
attached to the vehicle, subjected to no-yield and no-aeroelastic-instability requirements.  
TS-EMO itself is an unconstrained minimization algorithm. Therefore, the objective functions 
need to be modified and take the constraints into account. Since we are maximizing the flight 
range, the objective function 1( )f x  in Eq. (1) is modified to be the negative of the range, i.e., 

R− . In order to strictly impose the constraints in unconstrained solver, death penalty is 
imposed to mathematically reject the designs with violation of structural and aeroelastic 
constraints. The modified objective functions could be written as: 
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where  
x: vector of all aerodynamic and structural design variables to be elaborated in Section 2.2. 
R(x): range of flight, C is a constant related to the battery weight, battery efficiency and 
vehicle efficiency.  
m0, m(x): original mass (1100 kg) of the flying car and the mass of the attached wing. 
σmax(x), σY: the maximum stress across the model under steady level flight and the yield stress 
of the material being used. 
U∞, UD, UF: freestream air velocity, divergence speed and flutter speed. 
Upon the violation of the constraints, an infinite penalty is added onto the objective functions 
to be minimized, hence leading to the rejection of such data points from being included in the 
set of Pareto-optimal solutions. Here 1.1 and 1.2 in C1 through C3 are safety factors imposed 
to no-yield condition and no-aeroelastic-instability condition respectively. 

The objective function 1( )f x  is extracted from [16]. The constant C is related to the battery 
capacity and overall efficiency. The maximum lift-to-drag ratio, (L/D)max, is obtained by using 
Prandtl’s Lifting Line Theory (LLT), which will be elaborated in later sections. The original 
mass of the vehicle is obtained from the official website of the SkyDrive SD-05 prototype, 
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while the mass of the added wing is obtained by MSC NASTRAN WEIGHTCHECK function.  
The objective function 2 ( )f x  is simply the summation of the weight of all elements in the 
FEM model constructed. The details of the structural FEM model will be described in later 
sections. 
It is inevitable to bring extra weight onto the flying car by introducing a morphing extendable 
wing onto the vehicle. The range of flight is also sensitive to the weight of the vehicle. It is 
hence necessary to minimize the structural weight of the designed wing as well as to 
maximize the maximum lift-drag ratio (L/D)max of the wing during steady gliding so as to 
increase the range of the flight. Although the range of the flight itself is a function of both 
structural weight and the (L/D)max, we deem them as two separate objective functions as the 
structural weight might also be related to the manufacturing cost.  
Meanwhile, the wing design should be subjected to several constraints. Firstly, we should get 
rid of the yielding of the material to ensure structural integrity. Secondly, we should get rid of 
the occurrence of aeroelastic instabilities. In another word, we need to make sure that the 
maximum stress across the whole wing structure under steady level flight to be less than the 
yield stress of the material chosen. Also, we need to ensure that the designed flight speed of 
the flying vehicle should not be too close to the divergence and flutter speed to get rid of the 
material fracture caused by aeroelastic instability. 
2.2. Definition of Wing Model and Design Variables 
The wing model is defined by 18 aerodynamic and structural variables. The aerodynamic 
design variables specifies the geometry of the airfoil, while the structural variables specifies 
the skin thickness, cross-sectional properties of structural members and bring variations to 
internal octahedron structures. 
2.2.1. Aerodynamic Design Variables: PARSEC Airfoil Parameterization 
The airfoil geometry of the wing is defined by PARSEC Airfoil Parameterization. The 
detailed formulation of the PARSEC parameterization could be found in a paper from 
Vecchia et. al. [17] and a program written by Wu [18]. Although both [17] and [18] contain 
typos, readers are advised to consult them for a complete picture of the parameterization.  

PARSEC airfoil uses eleven parameters, from 1p  to 11p , to define an airfoil. Each of the 
coefficient represent a geometric feature of an airfoil. The accuracy of the PARSEC airfoil 
parameterization has been cross-checked with the data of the RAE 2822 airfoil from Khurana 
et. al.’s [19] paper.  In the optimization problem demonstrated in this paper, the design 
variables 8p  and 9p  are set to be zero. 

2.2.2. Structural Design Variables and The Internal Octahedron Structures 
The internal space bounded within the airfoil of the wing is entirely filled by a single layer of 
octahedron structure. The initial design is obtained by first constructing a rectangular wing 
without taper and washout, then add the taper and washout feature by coordinate transform. 
Figure 1 shows the top view of a half-span rectangular wing model designed with a chord 
length of c = 1000 mm and a span of b = 7400 mm (i.e., half-span of 3700 mm). The 
coordinate system is set up in accordance with the standard of MSC NASTRAN. The origin is 
located at the leading edge of the wing root. The x-axis is the chordwise direction, while the y-
axis is the spanwise direction. The chord length c is a design variable and would be rounded 
to the nearest 100 mm for convenience of model generation. 
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Let P and Q be the number of chordwise and spanwise cells respectively. In Figure 1, each 
octahedron cell is occupying a 100 mm × 100 mm space in the xy-plane in this example. The 
details of the NASTRAN grid point ID allocation and element connectivity is not elaborated 
in this paper. For any given values of c, b, P and Q, each octahedron cell is occupying a 
( / ) ( / )c P b Q×  rectangular space in the xy-plane. The optimization problem in this paper will 
fix a (c / 10) mm × 100 mm space for each octahedron cell in the xy-plane, i.e., P is fixed to 
be 10. The model is programmed such that the octahedron internal structure with any values 
of c, b, P and Q could be generated, as long as the number of cells in spanwise and chordwise 
directions, P and Q, do not exceed 98. The limitation arises from the 8-digit grid ID limit in 
NASTRAN. The octahedron cells are “uniform” in the sense of their allocation in xy-plane. 
The variation of the octahedron cells arises from the way the cells fill up the entire space 
bounded by the airfoil. The planform area is approximately 7.4 m2. Since both c and b were 
rounded to the nearest 100 mm for convenience of model generation, the actual planform area 
would usually slightly deviate from the proposed planform area. 
Figure 2 shows an example of the proposed wing model with skin and internal structure, with 
taper ratio 0.4λ =  and washout angle washout 15α = °  introduced. Figure 3 removed the skin 
and shows the internal octahedron structure only. Notice that the examples are just for 
demonstrating the capability of design variables of this wing model to amend wing taper and 
washout angle. In the optimization problem introduced in this paper, only a small washout 
angle will be introduced. A huge washout angle would make airfoils at some planform 
locations stall early, not only hindering the aerodynamic efficiency but also falsifies the 
lifting-line theory aerodynamic predictions. 
Before introducing the design variables, it is necessary to introduce and clarify some 
terminology. Since some design variables are related to several special edges of octahedron 
cells, it is important to point them out. Figure 4 shows a single octahedron cell HWXYZK, 
with H and K respectively lying on the upper and lower skin. For a rectangular wing, we have 

X Zx x=  (refer to Figure 1).  An octahedron can be understood as two pyramids of identical 
bases being adhered together. The coordinates of the identical base WXYZ is subjected to 
change of several design variables which define a curve bounded inside the airfoil. We name 
all such points W, X, Y and Z on each octahedron cell as midplane vertices. The curve is 
defined such that all midplane vertices ( , , )i i ix y z  satisfies ( )i iz h x= , where ( )h x  is the curve 
defined by design variables.  

 
Figure 1: Top View of the Internal Octahedron Structure of a Rectangular Half-Span Wing, c = 1000 mm, b = 3700 mm 
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y 
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Figure 2: A Design with Skin and Internal Structure, c = 800 mm, b = 6700 mm, Taper ratio = 0.4, Washout angle = 15° 

 
Figure 3: Illustrational Wing Design without Skin - Octahedron Internal Structure Only,  

c = 800 mm, b = 6700 mm Taper ratio = 0.4, Washout angle = 15° 
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Figure 4: Octahedral Cell Terminology 

 
Figure 5: Cross-sectional View of Airfoil, Octahedrons and Midplane Vertices 

 
Figure 6: An Example of Unacceptable Curve - Part of the Curve Overshoots the Airfoil Boundary 

zmc stands for mean camber line ẑc 

Figure 5 shows the cross-sectional view of an airfoil, the octahedrons and all midplane 
vertices marked with red dots from a rectangular wing without washout. The curve 

( )z h x=  which satisfies ( ) ( ) ( )lo upz x h x z x≤ ≤  for all 0 x c≤ ≤  and 0 / 2y b≤ ≤  is defined 
such that all the midplane vertices are lying on the curve. Figure 6 shows an example of 
unacceptable curve which is obtained by simply performing curve fitting over several 
points inside the airfoil. Part of the curve overshoots beyond the airfoil, which results in 
unrealistic designs.  
For simplicity, the airfoil is firstly normalized to a unit chord length, i.e., c = 1: 

 ˆ ˆ ˆˆ ( ),0 1z h x x= ≤ ≤  (2) 

First of all, several control points, say A, B, C and D are evenly distributed in chordwise 
coordinates. The model has been programmed such that users can specify any number of 
control points they like to adjust the control over the curve. Let ˆˆ ˆ ˆ( ) ( ) / 2c up loz x z z= +  be the 
mean camber line of the airfoil, such that: 

 1/2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )up c c lot x z x z x z x z x= − = −  (3) 
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be the half-thickness of the airfoil. Define [ ]1 2 3 4, , , 1,1a a a a ∈ −  be the design variables 
assigned to each of the control points A, B, C and D such that the ŷ-coordinates of the control 
points are:  

 [ ] 1 1/2 2 1/2 3 1/2 4 1/2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ( ) ( ) ( ) ( )A B C D A B C Dy y y y a t x a t x a t x a t x =    (4) 

Notice that the ŷ-coordinates of the control points in Eq. (9) does not directly control the 
formation of the curve. However, the ŷ-coordinates of the control points somewhat 
demonstrates how these control points are pulling the curve toward them at different 
chordwise locations and give variation to the octahedral midplane vertices. Denote the curve 
passing through (0,0) , 1( , )Ax a , 2( , )Bx a , 3( , )Cx a , 4( , )Dx a  and (1,0)  by curve fitting as 

0
ˆ ˆ( )H x , for example, [ ] [ ]1 2 3 4 0.04 0.22 0.71 0.15a a a a = − − − . The degree of 

polynomial is number of control points plus one. In this example, we are using 4 control 
points, hence there is a polynomial of degree 5 passing through all six points. With 

{ }1 2 3 4max , , , 0.71a a a a = , we have { }0 0
ˆ ˆˆ ˆmax min ( ) , max ( ) 0.85H x H x = . We want to 

bound the range of 0
ˆ ˆ( )H x  within [ ]1,1−  interval. Therefore, the polynomial 0

ˆ ˆ( )H x  is scaled 

such that the maximum absolute value of 0
ˆ ˆ( )H x  equals to the maximum absolute value of 1a  

through 4a . The curve after scaling is given by: 

 
{ }

( ) ( ){ }
1 2 3 4 0

0 0

ˆ ˆmax , , , ( )ˆ ˆ( )
ˆ ˆˆ ˆmax min ( ) , max ( )

a a a a H x
H x

H x H x
=  (5) 

Finally, the curve ˆ ˆ( )H x  is squeezed into the airfoil without overshooting: 

 1/2
ˆ ˆ ˆ( ) ( )ˆ ˆ ˆˆ ( ) ( )

2c
H x t xz h x z x= = +  (6) 

Expanding Eq. (11), we have: 

 
{ }
( ) ( ){ }

0 1 2 3 4 1/2

0 0

ˆ ˆ ˆ( ) max , , , ( )ˆ ˆ ˆ( )
ˆ ˆˆ ˆ2max min ( ) , max ( )

c

H x a a a a t x
h x z

H x H x
= +  (7) 

Notice that due to the scaling in Eq. (10), normally the curve ˆ ˆˆ ( )z h x=  does not pass 
through the control points A, B, C and D because otherwise it requires either of A, B, C 
and D to be the global maximum or minimum of the curve obtained. However, it is clear 
that the curve obtained is somewhat “tracing” the control points, or the control points are 
somewhat “pulling” the curve to their sides. Figure 7 shows the fitted curve obtained from 
aforementioned example and the corresponding octahedron geometry.  
 

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

62



S. Wu and T. Yokozeki 

 
Figure 7: Curve in Airfoil and Corresponding Octahedron Cell Midplane Vertices Positioning, 

a1 = –0.04, a2 = –0.22, a3 = 0.71, a4 = –0.15 

The introduction of the design variables so far produces a rectangular wing. That is, we 
would be able to create the wing model as shown in Figure 1 and Figure 5 by defining grid 
points and element connectivity. In order to produce wing model with taper and washout 
angle as shown in Figure 2 and Figure 3, coordinate transform should be applied to all grid 
points in the model, while the element connectivity could remain still. Consider an 
arbitrary grid point ( , , )j j j

R R Rx y z  defined in a rectangular wing without geometric twist. By 
introducing taper ratio λ, each grid point undergo the following transform, become 
( , , )j j j

T T Tx y z  to make the wing model a tapered wing: 
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where  
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z zz +

=  (9) 

Similarly, the wing washout is introduced by transforming all grid points from tapered 
grid points ( , , )j j j

T T Tx y z  to washout grid points ( , , )j j j
W W Wx y z . The washout grid points are 

obtained by the following coordinate transform from the tapered grid points: 
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The geometry of the proposed wing is well defined so far. Next, we will define some 
physical properties to give the wing weight and stiffness. The proposed FEM model of the 
wing with single-layer octahedron internal structure is prepared with the MSC NASTRAN 
input file format. There are two major types of elements being applied, one is the 2-D 
CQUAD4 plate elements for the skin of the wing; another is the 1-D CBAR element that 
represents the member of the octahedrons throughout the structure. We believe that the 
current model setup is adequate for a preliminary evaluation of the optimization problem. 
Despite of observation of moderate macroscopic static aeroelastic deformation under some 
high-aspect-ratio (high AR) configurations, it is believed that the deformation of each 
element in the model is still lying in the linear range due to the rejection criteria (death 
penalty) set for the material no-yielding requirement in the optimization algorithm. The 
material properties chosen to run the FEM simulation is that of Al 6061. We assume both 
the CQUAD4 and CBAR elements for skin and bar are made by Al 6061. We introduce 
two design variables for CQUAD4 and CBAR elements, namely the thickness of the 
CQUAD4 plate elements t for all skin elements, as well as the radius of the CBAR 
elements r, assuming all CBAR elements are circular bars. Notice that since CQUAD4 
element is a 2-D element while CBAR is a 1-D element, neither of these elements 
accurately describes the intersections at each grid point. Although a model constructed 
with 3D elements such as CHEXA, CPENTA and CTETRA would bring more preferable 
fidelity, the construction would be far more time-consuming owning to its complexity.   
To summarize Section 2, we proposed the optimization problem and defined aerodynamic 
and structural design variables of the proposed wing model with single-layer octahedron 
internal structure. There are 11 parameters defining a PARSEC airfoil, in which 9 of them 
will be used in our optimization problem. We demonstrated an example with 4 design 
variables that manipulate the control points which defined a curve inside the airfoil to give 
the midplane vertices variations. There are also 2 more design variables t and r 
respectively defining the wing skin thickness and the bar elements that constitute the 
octahedron cells. Other design variables include the chord length c, taper ratio λ and 
washout angle washoutα . If there are P cells in chordwise directions and Q cells in spanwise 
direction, then the total number of CBAR elements will be 12PQ, where 12 is the number 
of bar elements per octahedron cell, PQ is the total number of cells.  
 
3. SIMULATION SETUP  

In this section, we will briefly describe the aerodynamic theory we used, then describe how 
different software packages including the TS-EMO, MSC NASTRAN, UTCart, MATLAB 
and the model generation code are being integrated to deploy the optimization.  
3.1. Aerodynamics: The Lifting Line Theory 
The prediction of the lift and drag coefficients of the 3-D wings rely on Prandtl’s Lifting 
Line Theory (LLT) for subsonic incompressible flow. Recall that we have a tapered wing 
with a washout angle. The aerodynamic properties of airfoils at different spanwise 
locations need to be separately evaluated. The monoplane equation of a standard four-term 
solution is given by: 
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In order to evaluate the lift and induced drag coefficients, four monoplane equations need 
to be set up at different values of θ to solve the four unknowns 1A , 3A , 5A  and 7A . Each 
value of θ corresponds to a spanwise coordinate. For the standard four-term solution, we 
select / 8mθ π=  for 1, 2,3, 4m = , representing 0%, 38.3%, 70.7% and 92.4% of the half-
spanwise coordinates, as shown in Figure 8.  

 

Figure 8: Wing Planform and Spanwise Coordinates where α and c are being evaluated for monoplane equation (right half 
wing) and parasite drag (left half wing) 

The lift coefficient LC  and the induced drag ,D iC  are respectively: 
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is the span efficiency factor. Under steady level flight, the flying car wing would exhibit a 
static torsional deformation. When calculating the lift and drag coefficients, static 
aeroelastic torsional deformation need to be considered. We made the following 
simplifying assumptions: 

• The airfoil at each spanwise location of the wing under the normalized coordinate 
system is the same. 
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• The torsional warping of the wing is neglectable. 

• The impact of bending deformation towards the aerodynamic characteristics is 
neglected. 

So far, the drag obtained from the LLT monoplane equation does not represent the total 
drag of the 3-D wing. According to Torenbeek [20], the total drag can be decomposed in 
terms of induced drag and parasite drag, which is suitable for subsonic incompressible 
flow. The parasite drag is obtained by evaluating the airfoil properties at five spanwise 
locations with / 20nθ π=  for 1,3,5,7,9n = . The parasite drag coefficient is given by: 

 
,

,

j d j
j

D p

s C

C
S

=
∑

 (16) 

where { } { }1 2 3 4 5, , , ,js s s s s s=  are the five subdivided areas on the wing planform as shown in 
Figure 8, ,d jC  is the parasite drag coefficient of the 2-D airfoil evaluated at each spanwise 
location, and S is the total area of the wing. In another word, the parasite drag of the 3D wing 
is obtained by weighing the local drag coefficient with the subdivided area, then taking the 
average across all subdivided areas. 
3.2. Optimization Setup – The Objective Function  
In order to start the optimization program, the objective function with input and output 
clearly defined needs to be set up. In simple words, we have 18 input variables, in which 9 
of them are related to aerodynamics, 4 of them are related to the internal curve controlling 
the midplane vertices, and 5 of them are some geometrical properties of the planform and 
elements. The two outputs are the negative range of the flight and the weight of the wing 
attached, respectively. 
The objective functions are output(1) = -Range as well as output(2) = 
Weight. By inputting the design variables into the objective function, it will 
automatically generate the model and input files for NASTRAN to perform aeroelastic 
analysis. From the preliminary divergence analysis, a first picture of divergence speed as 
well as the weight and maximum stress in the structure at an angle of attack could be 
obtained. When the rejection criterion, namely no-yield conditions, and no-aeroelastic-
instability condition, are triggered, a death penalty to the magnitude of 1099 is assigned 
such that not only all later calculations are being skipped, but also to make the TS-EMO 
refrain from searching in vicinity of he rejected points.  
Death penalty of different values has been assigned at different stages of rejection. This is 
for debugging purposes and to enable us to understand better the reasons behind the 
rejections. For a complete run of the objective function evaluation without being rejected, 
it is expected that the UTCart 2-D CFD Solver will be called 81 times, while NASTRAN 
will be called 11 times. This is the number of function calls for one evaluation – the total 
number of calls will be multiplied by the number of function evaluations requested in the 
TS-EMO program. 
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4. RESULTS AND DISCUSSION 
In this section, we will discuss the results of the optimization problem produced by the TS-
EMO program developed by Bradford et. al. [1].  
4.1. Solver Setup and Input Parameters 

The 18 design variables and their respective lower and upper bounds in the TS-EMO are 
shown in Table 1. Some important physical properties regarding the flow and material 
properties are summarized in Table 2. The numerical experiments over the initial design 
provided us important insights in the programming of the objective function objfun. Since 
the torsional displacement distribution at different angle of attacks are different, it is 
necessary to run aeroelastic analysis at each angle of attack so that the AOAs, hence the CFD 
results at different spanwise coordinates would be accurate. 

Table 1: Design Variables of Optimization Problem, Meanings, Bounds and an Example Initial Design 

Input Meaning Units Lower 
Bound 

Upper 
Bound 

Initial 
Design 

1 p1 of PARSEC Airfoil Parameterization  0.004 0.010 0.0083 
2 p2 of PARSEC Airfoil Parameterization  0.2 0.6 0.4312 
3 p3 of PARSEC Airfoil Parameterization  0.04 0.08 0.0629 
4 p4 of PARSEC Airfoil Parameterization  –0.5 –0.3 –0.4273 
5 p5 of PARSEC Airfoil Parameterization  0.2 0.6 0.3441 
6 p6 of PARSEC Airfoil Parameterization  –0.08 –0.04 –0.0588 
7 p7 of PARSEC Airfoil Parameterization  0.5 0.8 0.7018 
8 p10 of PARSEC Airfoil Parameterization  –10 10 –6.86 
9 p11 of PARSEC Airfoil Parameterization  4 12 8.08 
10 a1 of curve defining midplane vertices  –1 1 –0.04 
11 a2 of curve defining midplane vertices  –1 1 –0.22 
12 a3 of curve defining midplane vertices  –1 1 0.71 
13 a4 of curve defining midplane vertices  –1 1 –0.15 
14 cr, root chord, to be rounded to the nearest 100 mm mm 600 1000 1000 
15 λ, the taper ratio  0.4 1 0.7 
16 r, radius of circular bars (octahedron CBAR elements) mm 5 15 3 
17 t, thickness of skin (skin panel CQUAD4 elements) mm 5 12 4 
18 washoutα , washout angle at the wing tip ° 0 5 5 

Table 2: Flow and Material Properties  

Flow Properties Material Properties 
Density 1.225 kg/m3 Mass Density 2700 kg/m3 

Temperature 297 K Young’s Modulus 69 GPa 
Speed of Flow 102 m/s (Ma = 0.3) Shear Modulus 27 GPa  

Dynamic Viscosity 1.812×10–5 Pa s Yield Stress 276 MPa 
Flutter Safety Factor 1.2 Safety factor 1.1 
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In the Bayesian Optimization, an initial data set needs to be generated such that a surrogate 
model that guides the search of the global optimum could be obtained. After a surrogate 
model has been obtained, TS-EMO will search within the design space for a specified number 
of function evaluations. In this optimization problem, we generated an initial data set that 
contains 48 function evaluations. In addition, another 148 function evaluations was conducted 
for searching of the Pareto-optimal solutions. A total of 196 function evaluations was carried 
out, in which 31 of the function evaluations were assigned death penalties. The optimization 
program ran for 4 days on a workstation in the laboratory, in which each function evaluation 
takes around 30 minutes.  
4.2. Pareto-Optimal Designs 
After the 196 functions evaluations, the TS-EMO selected 4 data points as the Pareto-optimal 
designs. The number of Pareto-optimal solutions are far less than our initial expectation, 
probably due to the lack of trade-off relevance caused by the dependence of the objective 
functions, and the inadequate number of function evaluations. We note that by setting the 
objective functions in the way defined in Eq. (1), a decreased weight of the wing will increase 
the range of the flight. Figure 9 shows the distribution of all the results of function evaluations 
that are not assigned with death penalty. The horizontal axis is the range of the flying car 
without constant C being multiplied with. It is basically the maximum lift-drag ratio divided 
by the total weight (in kg) of the vehicle. The vertical axis is the weight of the wing alone in 
kilogram. It could be observed that the data points are following a general trend that a 
decrease in weight of the wing would increase the range of flight. The blue dots represents 
those function evaluations in the initial data set. 48 function evaluations were requested in the 
initial data set, while 26 of them were not assigned with death penalty. The red crosses are the 
function evaluations under guided search of the TS-EMO algorithm. 148 functions 
evaluations were requested, and 139 points are preserved. The four pareto optimal solutions 
were selected by the program and circled with yellow circles. The aerodynamic calculation 
covered the angle of attacks ranged from –5° to 11°. The rejection criterion, in particular, the 
no-yield condition, is assessed at each AOA, hence the structural integrity at each AOA was 
assured. Since the solutions are being rejected if the maximum stress across all elements 
exceeds a designated value (yield stress divided by the safety factor, Eq. (1)), all the solution 
points shown in Figure 9 should be safe to operate over this wide range of AOAs.  
The input variables of the four Pareto-optimal results are shown in Table 3, sorted from left to 
right with respect to the increasing weight. A tradeoff between the weight and the range was 
observed at the Pareto optimal solutions. By increasing the weight, the range of the flight 
would be increased. The trend observed on the Pareto optimal solutions is counterintuitive as 
normally a decrease in the weight of designed wing will make the denominator in the range 
equation smaller, in term increases the range. However, readers should be reminded that the 
maximum lift-drag ratio is also a very important factor affecting the range of the vehicle. One 
possible explanation for the counterintuitive behavior of the Pareto-front is that, as the 
aerodynamic performance of the wing is being optimized, the structural performance of the 
airfoil is being deteriorated [21]. In order to maintain the structural integrity of the 
aerodynamically efficient but structurally vulnerable wing, extra materials should be added. A 
larger skin thickness decreases the maximum von Mises stress in the elements, while a larger 
radius of the bar elements (hence, an increased cross-sectional area) decreases the maximum 
axial stress.  
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It is extremely difficult to depict the complete cellular structure as it would be look crammed 
like how Figure 3 looks like. Hence, Figure 10 shows the airfoil and internal octahedron 
structural design for each of the four Pareto-optimal designs (a), (b), (c) and (d) as listed in 
Table 3, as well as their respective general shapes. Three of the pareto-optimal designs 
suggested a taper ratio very close to the lower bound specified in the optimization problem, 
i.e., 0.4. All the airfoils in the Pareto-optimal solutions somewhat demonstrated curve 
inflexion in either upper or lower skin.  
 

Table 3: Input Design Variables and Outputs of Pareto Optimal Solutions 

Input (a) (b) (c) (d) 
1 0.0081 0.0070 0.0064 0.0081 
2 0.5913 0.3089 0.4969 0.6000 
3 0.0429 0.0716 0.0536 0.0561 
4 –0.3252 –0.4573 –0.5000 –0.4893 
5 0.3367 0.4693 0.5244 0.4715 
6 –0.0753 –0.0681 –0.0724 –0.0656 
7 0.5739 0.7378 0.6832 0.6267 
8 –2.8456 5.8427 –9.3151 –8.5611 
9 4.6946 4.6740 4.3498 4.3629 
10 –0.8940 0.2598 –0.0183 –0.0021 
11 0.1599 –0.5522 –0.1721 –0.1952 
12 1.0000 –0.0830 –0.8996 –0.8864 
13 0.1819 –0.6710 0.5279 0.8767 
14 943.7515 823.7797 905.9504 803.5376 
15 0.4000 0.8132 0.4328 0.4000 
16 5.0548 5.1441 5.6711 5.8661 
17 7.0786 7.9029 7.6498 7.3316 
18 1.8415 1.7210 0.5433 0.0044 

Range 0.0188 0.0189 0.0202 0.0225 
Weight 226.4886 244.5417 259.0660 268.3590 

 
Figure 9: Pareto-Optimal Solutions Obtained by TS-EMO Algorithm 
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(a) Range = 0.0188, Weight = 226.4886 kg (b) Range = 0.0189, Weight = 244.5417 kg 

  

  

(c) Range = 0.0202, Weight = 259.0660 kg (d) Range = 0.0225, Weight = 268.3590 kg 

Figure 10: Airfoil and Internal Structural Design of Pareto Optimal Solutions. For each of (a), (b), (c) and (d), the airfoil with 
internal structure screenshotted under rectangular wing configuration without washout has been obtained. The lower figure 

shows the look of the optimized 3-D look. 

Among the four Pareto-optimal solutions, their weights ranged from 220 kg to 270 kg, which 
would become 17% to 20% of the total weight of the flying car. To the best of the author’s 
knowledge, there is very limited literature discussing the weight decomposition of UAM 
products like flying cars, but the weight percentage of the wing is comparable to civil 
airliners. Since we have no information about the C constant in the range equation so far, it is 
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not easy for us to provide an accurate estimate of the range of flight. By referring to Table 2 
and Figure 15 in Ref [16], we roughly estimate that the SkyDrive flying car with the Pareto-
optimal wing design (d), in which (L/D)max = 30, equipped with Li-ion battery of 150 Wh/kg 
specific capacity, battery occupying 30% of the total weight, would able to glide range of 
approximately 500 km. When Pareto-optimal design (a) is applied to the flying car, the range 
will be reduced to around 400 km. The range estimate could be greatly increased if there is 
further breakthrough in Li-ion battery development. The tradeoff between the manufacturing 
cost of the flying car and the range of flight would be an interesting topic to explore further. 
5. CONCLUSION 
This paper described the MDO of a wing with single-layer octahedron internal structure 
specifically designed for a SkyDrive flying car which weighs 1100 kg. We aim to maximize 
the gliding range of flight of the flying car by altering 18 design variables covering the 
aerodynamic and structural disciplines. We constructed a 18-input, 2-output MDO objective 
function code by integrating the aerodynamic, aeroelastic and structural property evaluations 
of the proposed wing designs combining UTCart, NASTRAN and the model generation code. 
The objective function is sent to TS-EMO MDO program. Four Pareto-optimal solutions were 
obtained after 196 function evaluations that cost around 4 days. A rough estimate of gliding 
range of around 400 km to 500 km has been obtained. 
As a preliminary attempt of performing MDO of an unconventional octahedron cellular 
structured wing with TS-EMO, we believe that the current result somewhat demonstrated the 
potential of TS-EMO in novel aerostructural design. We believe that our optimization setup 
could be further improved. Firstly, we noticed that the internal geometry of Pareto-optimal 
design (a) seems weird. The internal curve governing the midplane vertices is almost sticking 
to the upper and lower skin. This could be improved by changing the lower and upper bounds 
of inputs 10 through 13. Secondly, the cellular structure near the trailing edge seems absurdly 
compressed. We are considering replacing the trailing edge cells with the corrugated panels 
developed by Yokozeki et. al. [2] to make the design more reasonable. Thirdly, the element 
properties, namely the thickness of skin and radius of circular bars, are uniform across the 
structure. Nonuniform element property distribution could be introduced to further reduce the 
weight. As illustrated in Figure 10, for all Pareto-optimal designs, the maximum stress 
occurred over a very tiny region near the wing root, mainly on skin elements. The absence of 
spanwise/chordwise skin thickness/bar radius distribution prevented the design from being 
further optimized. Furthermore, it is believed that more Pareto optimal solutions could be 
obtained if the number of function evaluations can be increased.  
We believe that TS-EMO functioned satisfactorily in this optimization problem. Bayesian 
Optimization has high potential in the aerospace industry as a way of exploring novel 
structural designs. Meanwhile, the proposed cellular structured octahedron wing showed 
considerable capability to extend the range of flying cars much beyond its original 
specifications. 
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Abstract. As part of the current efforts targeting further development on cleaner and
more efficient aviation, this study proposes a new MDO approach for an optimized High
Aspect Ratio (HAR) wing weight using a load alleviation. Load Alleviation Function
(LAF) aims at diminishing the peak wing bending moment due to a manoeuvre or a gust
by redistributing the lift to a more inboard position on the wing using movables to decrease
the overall wing weight. Nowadays, movables are exclusively designed to master the control
of the aircraft, and LAF takes advantage of these control surfaces characteristics despite
not being designed for it. The challenge of LAF tuning on a HAR will come from the high
wing deformation. So this study aims to address the handling qualities (HQ) and LAF
aspects in an optimization process of the control surfaces positioning, actuators power,
sizes and deflections covering both disciplines, with a wing weight reduction intent. The
challenges faced within the project reside in the couplings of the numerous disciplines
present in the overall aircraft design: aerodynamics, loads, static aeroelasticity (movable
control reversal), HQ, stress, and mass. A highlight will be made on the aerodynamic and
loads disciplines, as current MDO publications do not consider a broad number of load
cases and flight points with the right coverage of the sub-loads disciplines (such as gust and
its aerodynamic specificities), which are crucial in the ranking of different designs, and
crucial in the assessment of its feasibility, and finally for certification. This study aims
to define the MDO framework by identifying the right compromise between disciplines and
fidelities whilst preserving the computational resources. In the first stages, the project
focuses on the lower-fidelity approaches through open-source means to verify its feasibility
and compile the requirements, targeting to include multi-fidelity approaches at future stages
of the research project.

Keywords: Load Alleviation Function, Multidisciplinary Design Optimization, Multi-
fidelity, Handling Quality, Aircraft Control, High Aspect Ratio, Aeroelasticity, Loads
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1 INTRODUCTION

In recent years there has been a surge in the interest in HAR aircraft in civil aviation
[1]. Thanks to the increase in performance due to the reduction in induced drag. However,
this effect is of no use if the wing cannot withstand the load applied, increasing the aspect
ratio can only be achieved either by increasing the structural mass or allowing an increase
in wing flexibility. The flexibility can be augmented without failure thanks to the use
of advanced composite materials, which is already a common practice in recent aircraft
designs. The problem arises with the aeroelastic effects that this flexibility implies in the
control of the aircraft, as it will be discussed in section 2 and 4.1. The MDO approach to
define the control surface concept could be a promising solution to this problem as it is
addressing the flexibility effect, handling qualities and the load alleviation opportunity to
minimize the weight increase due to the HAR concept. The control surface optimization
through MDO is also relevant for classical wing, as sequential computation limits the
number of configurations and disciplines that could be considered.

Accordingly, the interest of this study is to develop an MDO framework to optimize
the LAF by improving the movables configurations. Some intricacies will arise from the
high aspect ratio of the wing, a highly flexible wing will highlight the aeroelastic effects
constraining the efficiency of the LAF. To address and illustrate this, two configurations
will be assessed to support the comparison of a classical wing configuration versus high
aspect ratio.

Load alleviation (LAF) or Maneuver Load Alleviation (MLA) involves the process of
structural load mitigation that occurs during flight. The LAF configuration must comply
to the European Union Safety Agency (EASA) and the Federal Aviation Administration
(FAA) in the United States regulations. A series of specifications for the design and
certification of aircraft regarding the maximum loads an aircraft must be able to endure
is available in [2] and [3].

Referring now to the sections CS-25.301 Loads: “Strength requirements are specified
in terms of limit loads (the maximum loads to be expected in service) and ultimate loads
(limit loads multiplied by prescribed factors of safety). Unless otherwise provided, pre-
scribed loads are limit loads.” For this case, we will focus on the limit loads, covered as
well in section CS-25.321, where is specified the maximum and minimum load factor an
aircraft must endure at several flight speeds. The load factor represents the ratio of the
aerodynamic component to the weight of the aircraft [2].”

To know on which conditions the limit loads can be achieved during flight, the ma-
noeuvre loads sections CS-25.331 and CS-25.333, specify the design flight speeds and load
factors. In section 3.2 further details will be given on the flight envelope the aircraft will
be subjected to.

The first load alleviation system was designed for the A320 [4], where it was shown a
potential net load alleviation of around 15% at the wing root.

2 LAF/MLA WORKING PRINCIPLE

Knowing the potential benefits of LAF/MLA, it is imperative to know how it works
in flight to assess the required disciplines for optimization. LAF in a nutshell intends to
create a downward force in the wing to alleviate the increase in loads due to a manoeuvre
by deploying the control surfaces. But deploying the control surfaces means a change in
the location of the centre of pressure, which can be thought of as the position where the
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total lift is applied in an aircraft. This force will generate a moment with respect to the
centre of mass of the aircraft which must be counteracted by the Horizontal Tail Plane
(HTP) in order to have a stable flight. This presents a challenge, as most of the previous
studies that want to tackle aeroestructural optimization, only consider the main wing.

Figure 1: Comparison of pressure distribution between deployed aileron and clean config-
uration.

In figure 1 it has been plotted the pressure distribution of both configurations, with
and without the aileron deflected. This contour plot presents the pressure difference for
what would be the upper and lower surface of the wing. The slight decrease in pressure
in the region where the aileron is deflected, means a local loss in the lift over the area,
alleviating the load at which the wing is subjected.

As it can be seen in 2, there is already a 6.6% improvement in loads with just deploying
the default aileron configuration.

3 PROBLEM DESCRIPTION

The objective of this study is to devise a preliminary MDO architecture to attain the
best control surface configuration for the least wing bending at the root. The problem
could be read as:

Minimize Mx(pos, size)i

w.r.t. pos, size (1)

subject to Fz(pos, size) < Limit Loads

Where Mx(pos, size)i is the wing bending moment for a given manoeuvrei and Fz is the
vertical loads. The wing box should be subjected to an extensive flight envelope for its
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(a) Vertical Shear Loads
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Figure 2: Effect of LAF on vertical load and bending moment (uCRM13.5 [5] with
10◦aileron deflection).

correct sizing, for that a broad set of flight points will be evaluated to retrieve the worst
scenario, see section 3.2. The variables position, size refer to the position and size of two
adjacent ailerons present in the original design. Being this architecture just a preliminary
study, many other constraints must be taken into account for it to reach certification-level
requirements, such as Control Reversal (CR), Handling Qualities (HQ), Gust, Horizontal
Tail Plane (HTP) Overloading and Failure Conditions. These constraints need to be
assessed and this project targets their assessment as separate disciplines in the future (see
section 6).

3.1 Model description

As a target for this study, the uCRM9 and uCRM13.5 were selected [5] as they perform
as great examples for this test case. The uCRM9, representing a standard long-range
aircraft with a wing aspect ratio of 9, will be used as the baseline for the optimization.
To validate the results, [6] has a great compilation of the static aeroelastic performance
of both uCRM9 and uCRM13.5.

These models were conceived for aeroestructural optimization, so there are no specifi-
cations for the control surfaces. To have some reference, the model CRM-HL (Common
Research Model in High Lift configuration) is practically the same as the uCRM9, and
following the design specifications of the technical report of Shmilovich et al.[7] the posi-
tion and size of the reference model were determined for the uCRM9. For the uCRM13.5
since there is no available information, the same nondimensional aileron size and position
from the CRM-HL was used.

Both models share the same centre of mass (presented in yellow in figure 3). The
relevant design criteria for the aircraft are depicted in table 1.

3.2 Flight envelope

The definition of the flight envelope is another important step in the optimization,
as they will be the test cases for the model. For this reason, real sizing test cases for
long-range aircraft are used, shown in table 2. At every iteration, all manoeuvres are
evaluated, and the worst case will be the output to minimize, as the manoeuvering sizing
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Figure 3: Aircraft model comparison, uCRM13.5 (Top) and uCRM9 (Bottom).

Table 1: Design properties for both aircraft.

Aircraft uCRM9 uCRM13.5
AR [-] 9 13.5

Span [m] 58.76 72.00
MTOW [ton] 297.5 284.256

Mach Cruise [-] 0.85 0.85
Cruise alt. [kft] 37 37

case may not be the same for different LAF configurations.
In 2 also includes the cruise conditions as a reference. VC and VA stand for design

cruising and manoeuvring speeds, respectively. n is the load factor.

4 COMPUTATIONAL APPROACH

Given the design criteria and constraints, an aerodynamic and structural model is
required for the main Multidisciplinary Analysis (MDA) of the optimization loop.

4.1 MDA and Static Aeroelasticity

As mentioned in section 2, a simple Fluid-Structure Interaction (FSI) with just aerody-
namics and structure will not suffice. It is required to take into account the contribution
of the tail. The interest of the study will be just static aeroelasticity, so NASTRAN will
be selected for its capability of not only solving the FSI but also solving the longitudinal
stability problem.

However, it is crucial to understand beforehand how the static aeroelastic analysis
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Table 2: Flight envelope.

VA
Mach Alt. [kft] Q [Pa] n [-]
0.512 10.0 12783.5 2.5
0.780 25.0 16012.1 2.5
0.780 38.0 8815.7 2.5

VC
Mach Alt. [kft] Q [Pa] n [-]
0.85 37.0 10984.4 1.0
0.594 10.0 17206.1 2.5
0.860 26.0 18630.9 2.5
0.860 38.0 10717.4 2.5

is performed. In this problem two disciplines take part: structures and aerodynamics.
Both are heavily coupled since the deformation of the wing depends on the load applied,
which, in turn, is obtained from the pressure distribution of the aerodynamic surfaces.
This circles back to the structural part, as the aerodynamic shape, consequently, will vary
depending on the load applied. This loop is what static aeroelasticity aims to solve.

AoA,Delta

L∗Mx 1,7-2:Longitudinal Stability Solver AoA,Delta AoA,Delta

L,Mx 2,6-3:MDA Static Aeroelasticity AeroDefl . AeroLoads,StructDefl . StructLoads

AeroLoads L,Mx AeroLoads 3:Aero AeroLoads

StructLoads,AeroDefl . AeroDefl .,StructLoads AeroDefl . 4:Load Mapping StructLoads

StructDefl . StructDefl . StructDefl . 5:Structures

Figure 4: MDA XDSM for a static Aeroelastic problem with a longitudinal stability solver.

As shown in figure 4, the MDA Static Aeroelasticity (Sol 144 in Nastran) not only
has to solve the aero-structural problem but on top of that equilibrium must be satisfied.
Where the total lift given by the aerodynamic surfaces must equal the weight of the
aircraft, as well as having no pitching moment at the Center of Mass (CoM).

4.2 Structural Model

The models uCRM9 and uCRM13.5 [6] NASTRAN Finite Element Model (FEM) are
readily available, only for the wingbox. But with some modifications, it is possible to
adapt the model to satisfy the problem needs.

First of all, it is imperative to find and specify the CoM of the aircraft. NASTRAN
requires as input the centre of mass to be used as a pivot point for longitudinal stability.
From the results of [6], it can be assumed that the CoM is placed near the reference point
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used to obtain the pitching moment, as it is close to zero. Once this point is known,
the centre of mass of the wing box plus fuel is obtained from the FEM. To force a CoM
at the desired point, the approach taken was to include a third concentrated mass point
as depicted in figure 5, this mass will equilibrate the wing box on the CoM and the
remaining aircraft mass will be placed at the CoM. This workaround will suffice for static
aeroelasticity, but it will not work for any dynamic analysis.

Figure 5: uCRM9 point mass locations, the aircraft CoM (yellow), aircraft trim mass
point (green), and wingbox CoM (red).

4.3 Full Aerodynamic Model: Wing and HTP

The aerodynamic model will be in this case the Doublet Lattice Method (DLM) present
in NASTRAN. Its simplicity will present a great advantage in the optimization process, as
it will rapidly provide aerodynamic loads to the structural discipline reducing considerably
the run times, compared to other flow solvers such as Computational Fluid Dynamics
(CFD). The DLM model available in NASTRAN will as well account for compressibility
effects, via the Prandtl–Glauert transformation [8].

To include the aerodynamics in NASTRAN, the projection of the wing was used as
a reference. The mesh will consist of a series of horizontal panels representing idealised
wetted surfaces, depicted in figure 6.

The element density of the DLM panels in the wings is much greater than the HTP, as
it will be the focus of the optimization. As the aileron is defined as a subset of the panels
that make the wing, the precision of the mesh must be high enough to avoid aliasing.

The main issue for using DLM as the aerodynamic solver is the linear behaviour, this
means that there will not be any viscous effects that may lead to flow separation, which
is the case in manoeuvres with a high load factor as the angle of attack is high as well.
Apart from that the aerodynamic forces will not include the contribution due to camber
or airfoil thickness.

4.4 Load Mapping

The last discipline in the MDA is the load mapping, often referred to as load and
displacement interpolation. Both aerodynamic and structural meshes are essentially dif-
ferent, not only for the different physics involved but also because the nodes for both do
not coincide. Within NASTRAN, the splining cards have as its purpose collecting the
load applied at a given aero-node and applying it to the correct structural nodes, and, at
the same time, retrieving the displacement of each structural node to be applied in the
respective aero-node so the aerodynamic mesh can be deformed in parallel to match the
structural mesh. Being the splining essentially an interpolation, it is important to always
validate the loads introduced, as the total load from the aerodynamics must be equal to
the load applied in the structure so that the interpolation is conservative. Many radial
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Figure 6: Aircraft FEM (Red) & DLM (Blue) model comparison, uCRM13.5 (Top) and
uCRM9 (Bottom).

basis functions for load interpolation are available, some of which are discussed in [9] and
will serve as a foundation for accurate load interpolation.

For NASTRAN, many options are available for the splining. SPLINE1 is the preferred
solution as it will interpolate the loads in a defined surface [10], this Thin Plate Splines will
transfer the load from the aerodynamic panels to the rigid connections to the structure,
see figure 7. For this reason, rigid connections from the leading edge to the geometrical
centre in between ribs and to the trailing edge were created, aiming at capturing the local
twist of the wing and tail. The loads are distributed from the SPLINE1 surface to the
structural FEM via radial interpolation through the RBE3 card [10], as shown in figure
7.

4.5 Result Validation

Once the model is ready, using the results from [6] as a reference, knowing that the
model is rather low-fidelity it is not expected high accuracy regarding the CFD/CSM
results obtained in [6]. The objective is to validate if the results are coherent with the
study test cases. Only the maximum deflection of the wing and angle of attack for trim
was used, see table 3, where the results from the static aeroelasticity from NASTRAN
are compiled under Sol144.

As expected, the displacement results differ from the reference from 26.42% to 39.67%.
For the same wing box model, previous studies [11] have shown large discrepancies between
low-fidelity and high-fidelity aeroelastic analysis. This is to be expected, not only because
of the low fidelity aerodynamics, but it can be also due to the contribution of the tail
might be different. Finally, the angle of attack (AoA) results are also different. This is
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Figure 7: SPLINE1 configuration (green), ribs (red), RBE3 (black) and CAERO1 (blue)
entries.

Table 3: Result validation in cruise flight conditions.

uCRM9 Brooks et al.[6] Sol144
Max Vertical deflection [m] 2.524 1.857

AoA [deg] 2.044 5.389

uCRM13.5 Brooks et al.[6] Sol144
Max Vertical deflection [m] 6.02 3.632

AoA [deg] - 5.083

due to the fact that only the wing and the tail are considered.
Nevertheless, the results obtained, compared to reference single-aisle aircraft publica-

tions, are representing the right baseline for this analysis. The final deformation can be
seen in figure 8.

4.6 Optimization Process

Given that the MDA is currently contained in just one discipline and handled by
NASTRAN, the optimization can be achieved simply by introducing an optimizer such
as Sequential Least SQuares Programming (SLSQP) or Constrained Optimization By
Linear Approximation (COBYLA), these optimizers have the advantage that they do not
require gradient input, as the sensitivities are computed through the execution. This
allows treating NASTRAN as a ”black box”, which is not the most optimal process, but
given the simplicity of the architecture, as a first approach, it will suffice. The eXtended
Design Structure Matrix (XDSM) is presented in figure 9.

For the execution of the optimization, GEMSEO [12] was utilized for its simplicity to
create and define a multidisciplinary analysis and optimization process.
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Figure 8: Wingbox cruise deflection comparison, uCRM13.5 (Top) and uCRM9 (Bottom).

Position, Size

Mx , Fz 1,3-2:Optimizer Position, Size

Mx , Fz 2:ManeuverMDA

Figure 9: MDAO XDSM for aileron LAF optimization.

5 RESULTS

The first iterations of the optimization had two design variables, the position and size of
the two adjacent ailerons. And it comes as no surprise that the optimizer will attempt to
reach the maximum size it can for the control surface. The linear aerodynamics present
in the DLM solver does not penalize the size of the aileron, so for the final results, a
final size of 0.2 was set. It is for this reason as well the deflection angle was not taken
into consideration and all the tests were run with 10◦deflection. As a design variable for
the optimization, the optimizer will always be inclined to the greatest value as no flow
separation will appear.

Apart from that, the optimizer has given some interesting insight on what is the pref-
erence for the placement of the ailerons. As it can be seen in figure 10, contrary to what
it may be most intuitive, the aileron is not placed near the wing tip where the lever arm
respect to the root is greatest, but it tends to 60-70% respect to the wingspan. This is
due to the fact that near the wingtip the wing box is more flexible, which means that the
bending effect will not be as apparent in the root. So for LAF to be effective, it must
be closer to the root, finding a compromise between the lever arm and structural flexibil-
ity. Less benefit with LAF is anticipated in HAR configuration, the increase in flexibility
diminishes the effectiveness of the control surface. And, on top the wing deflection, the
aileron induces a torque reducing the local angle of attack, and thus decreasing the in-
tended effect by the aileron deployment. The overall weight impact should be assessed to
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uCRM13.5

uCRM9

Baseline

Optima

Optima

Baseline

Y

X

Figure 10: Aileron position optimization, baseline vs optima.

Table 4: Results, nondimensional reference and optimal geometrical aileron placement.
Showing the inboard relocation for optimal load alleviation. Maximum bending moment
found at M=0.78 at 38kft with n=2.5 for both cases.

uCRM13.5 Reference Optimal
Position [-] 0.8 0.624

Size [-] 0.2 0.2
MX Reduction [%] - 3%

uCRM9 Reference Optimal
Position [-] 0.8 0.708

Size [-] 0.2 0.2
MX Reduction [%] - 2%

identify the real ranking between HAR wings and the classical configuration (AR9).
Nonetheless, the outcome of this analysis shows an additional 3% benefit on top of

the load reduction already present thanks to LAF, this can potentially reduce hundreds
of kilograms in the wing structure, and it is targeted as a future part of the project to
address the potential weight savings for both wing configurations.

It is worth mentioning that the final placement of the aileron will interfere with the
flaps present in the current design. For this study, the optimizer was given the liberty
to find the most suitable position in order to get a better insight into the problem. This
result also means that it might be interesting in the future to consider as well the use of
spoilers, which are closer to the optimal zone for the aileron.
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6 NEXT STEPS

As this study is part of a larger project, the next steps to be taken to develop the current
MDAO framework by adding other disciplines relevant for feasibility and certification.
Firstly, the control reversal effect must be taken into account, by creating a separate
discipline that monitors the local lift contribution in the control surface area. Indeed, the
capability to control the aircraft is dependant of the control surface efficiency.

Only 2.5g manoeuvres were taken into account in this study, and following the certifi-
cation specification section 25.335 [2], the aircraft must operate below limit loads under a
gust encounter. The control surfaces are susceptible to failure, to fully validate the design
it is necessary to validate the loads under failure conditions.

Another important aspect is that ailerons are conceived for the control of the aircraft,
if the optimizer does not constrain at some level the effectiveness of the control surfaces
to still be able to control the aircraft to fulfil the handling quality perspective.

As mentioned before, the linear aerodynamics present in the current implementation
means there is no penalty for high angles of attack and aileron deflection. Fast solutions
must be addressed such as [13] and [14], especially for gust computation. And for higher
fidelity, finding a nonlinear aerodynamics solver such as CFD or derivatives that is efficient
enough to run inside the optimization loop is going to be part of the upcoming challenges.
Following previous works like [15], the loads can be interpolated from different aerody-
namic flow solvers, which will also present a great opportunity to assess multi-fidelity in
the loop.

On top of the flight points, to further enrich the test cases there is an interest to consider
different mass configurations with different fuel distributions along the wing which may
lead to harsher load conditions.

Finally, it is imperative to address the potential weight savings which ultimately will
highlight the true objective of LAF. The MDAO architecture must have, as a final objec-
tive, to optimize the wing structure and then be coupled with stress in order to allow the
convergence of the aero-loads-stress process.

Position, Size
Mx *

Man , FzMan , CR E� . ,

FzMan ,MxFail , FzFail ,

MxGust , FzGust , RollE� .

1,9-2:Optimizer Position, Size Position, Size Position, Size Position, Size Position, Size Position, Size

MxMan , FzGust ,MxFail , FzMan ,MxGust , CR E� . , RollE� . , FzFail 2,8-3:MDA Parallel

MxMan , FzMan 3:ManeuverMDA

CR E� . 4:CR

RollE� . 5:HQ

MxGust , FzGust 6:Gust

MxFail , FzFail 7:FailureCase

* *

* * *

* * *

Figure 11: MDAO XDSM for aileron LAF, with future implementations (grey).

In figure 11 the target MDAO XDSM is presented, with the future disciplines to develop
in grey color.
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7 CONCLUSIONS

This study has demonstrated the LAF/MLA capabilities and how they can be improved
by the better distribution of the control surfaces. This MDA process in spite of the fact
that it is very simple differs from other wing/wing box optimizations because it requires
the HTP, resembling Overall Aircraft Design (OAD). Although it is a very preliminary
framework, it has made clear the requirements for the MDA required to perform such
optimization, not only for the physics involved but also the requirements that need to be
fulfilled as constraints for the optimizer to converge in a feasible design. This study will
set the foundation for a greater and more complex framework that will intend to deepen
the concept of LAF optimization with greater fidelity and feasibility.
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Abstract. Capabilities of In-house HEMLAB solver is extended by implementing an ALE
approach to solve rigid grid motion and is employed to asses the hover performance of S-
76 main rotor. In the study, firstly, we verified our algorithm on baseline cases proposed
under HiOCFD4 workshop. Then, we performed Euler simulations of S-76 main rotor
with swept-tapered tip. Since the rotor problems requires high resolution grids, adaptive
mesh refinement is exploited in the study. pyAMG anisotropic metric mesh adaptation
library was integrated to HEMLAB previously to do mesh refinement. In the study the
capabilities of HEMLAB solver is further tested on such a complex flow physics.

Keywords: FVM, ALE, Rotor simulation, Adaptive Mesh Refinement (AMR)
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1 INTRODUCTION

Moving boundary problems attracted researchers over years since most of the com-
plex phenomenons in nature include moving boundaries coupled with their surroundings.
There are several methodologies to overcome difficulties emerging from movement of body.
A very accurate method to solve the problem is based on Arbitrary-Lagrangian-Eulerian
(ALE) formulation. Exploiting the ALE that coalesce the advantages of Lagrangian
and Eulerian approaches, large distortions on the mesh can be handled while preserv-
ing the precise shape of interface and high-order solutions on deforming meshes. In this
context, in-house HEMLAB algorithm is enhanced with the capability of solving mov-
ing mesh problems via ALE. The numerical algorithm is initially validated on heaving
and pitching/heaving airfoil problem which is proposed in High-Order CFD Workshop 4
(HiOCFD4). Then, the algorithm is applied to solve flow around S-76 main rotor which
is provided under Hover Prediction Workshop (HPW).

Rotor analysis still contains some difficulties despite of the improvements in CFD and
computer technology. These difficulties simply rely on the vortex formation at the prox-
imity of the rotor and its interaction with other blades, highly complex geometries of
the rotor, strong vibrations and shock waves [1]. The flow around a rotating object also
includes sharp velocity gradients and strong vorticities. For instance, due to this strong
vorticity, the turbulent simulation of a rotating flow needs a special consideration. To
overcome this issue, some reearchers divided domain into two and the outer domain is
solved using Euler equations to preserve the vortices because vortices can be easily diffused
by viscosity. Wake breakdown phenomena is also a problem to resolve and understand
[2]. The flow physics may even be more complex in forward flight because of dynamic
change of pitch angle and, because, vibration effect becomes more significant. In addition,
It looks like the mesh structure is highly effective on the CFD solutions [3]. For accurate
predictions of performance parameters, excessive numbers of grids are needed. The men-
tioned difficulties force us to use high fidelity CFD tools instead of blade element theory,
blade element momentum theory, free and prescribed Wake methods. The current focus
of the researchers are on developing reliable CFD tools and algorithms to simulate rotor
problems. However, they seems to be still very expensive. Adaptive mesh refinement
technique offers an opportunity to get rid of some of the unnecessary expenses.

In the vision of overcoming these issues with the researchers all over the world, some
benchmark problems are prepared under the AIAA Hover Prediction Workshop (HPW).
The current study focuses on solution of flow around S-76 main rotor geometry with
swept-tapered tip, which is one of the problems presented in HPW. HEMLAB solver
is empowered with an Arbitrary-Lagrangian-Eulerian(ALE) technique to solve the rotor
problem. pyAMG library is employed to do anisotropic mesh refinement. By doing so,
the expense of the problem will be reduced significantly. The previous study in Ref. [4]
showed that an-isotropic mesh adaptation may become very beneficent on the current
problem.

2 METHODOLOGY

HEMLAB solver [5] uses a vertex based median-dual finite volume approach. It em-
ploys an efficient edge based data structure. The data structure was extended from an
existing 2D data structure to 3D. It utilises pointers to reach a specific data lying on the
facet-edge data types belonging each edge of a face of each volume. Using the pointers
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org, dest, sym and rot, whole domain can be swept starting from an arbitrary point. Due
to this unique data structure, spatial locality in physical memory is achieved. Therefore,
the algorithm works cache-efficiently. HEMLAB can solve Euler and RANS equations.
For turbulent flows, it utilises one equation negative Spalart-Allmaras model [6]. Implicit
solutions are obtained by employing Newton’s sub-iterations. Fully coupled formulation
is used for Spalart-Allmaras turbulence model in Newton’s method. PETSc [7] library
is exploited to solve implicit equation system with FGMRES Krylov subspace algorithm.
Block matrices are exploited for the evaluation of jacobian matrix to improve its com-
putational performance. Time dependent simulations are conducted by first order dual
time-stepping approach [8]. HEMLAB solver can employ HLLC [9] where the wave speed
estimate is as proposed by Batten et. al. [10] and Roe’s flux difference scheme [11]
to discretize convective terms. The second order accuracy in spatial discretizations are
achieved by using gradients computed at nodes. The gradients for flux reconstruction are
calculated by unweighted second-order least square approach [12] and left and right state
can be obtained using Taylor series expansion with second order accuracy. On the other
hand, Green-Gauss gradients are computed at control volume faces for viscous fluxes.

Following the recent advencements in the adaptive mesh refinement techniques, pyAMG
anisotropic mesh adaptation library is implemented into HEMLAB solver. The adaptive
mesh refinement technique provided by pyAMG [13, 14] relies on a feature based error
calculation based on Hessian matrix of a given solution parameter such as Mach, density
etc. The software controls the Lp norm of interpolation error. Minimization of the inter-
polation error is achieved by Hessian matrix that is scaled by its determinant. This term
represents a metric in Riemannian manifold. The aim of the calculation is to find a unit
length edges and unit volume elements with respect to the metric. This is achieved by
doing an diagonalization in orthogonal frame. This methodology employed by pyAMG
also takes the direction of edges into account. The parameter determining the Hessian
matrix is called sensor. Theoretically, the sensor may take any parameter. However, it
actually depends on the physics that is desired to capture. For instance, it is more reliable
to use Mach sensor to capture shocks waves and one may use summed combination of
the parameters [15]. As stated by Fidkowski and Roe [16], entropy variable can become
a general-purpose sensor variable. In this respect, the previous study [4] and current one
attempt to utilise Mach and entropy variable as sensor functions. Mach sensor function
is

Mach Sensor = M × e−0.1r + 0.5

whereas the entropy sensor is

Entropy Sensor = e−0.1r × S + 0.5

S =
Rg

γ − 1
ln

T

Tinf
−Rg ln

ρ

ρ∞

where M is Mach number, r is the distance from wall and S is entropy. The Rg and γ
terms represent gas constant and specific heat capaticty ratio where T and ρ corresponds
to temperature and density. The exponential term with r is added to avoid excessively
large elements at the farfield.

HEMLAB code was originally developed for fixed mesh problems. In the scope of
this study, an Arbitrary-Lagrangian-Eulerian(ALE) approach is implemented to solve
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moving mesh problems. For now, only rigid motion is considered to solve the rotor
problem. Implementing ALE kinematics, the only difference from the Eulerian form is
that an additional convective term (flux due to grid motion) appears due to the grid
velocity. The term brings a term to diagonal of Jacobian of convective fluxes and it just
shifts the eigenvalues of the jacobian whereas the eigenvectors remains unchanged. In
order to preserve uniform flow solutions in the ALE approach, the grid velocities needs a
special treatment. The numerical discretizations had better to satisfy Discrete Geometric
Conservation Law (DGCL). Farhat and co-workers showed that DGCL is at least sufficient
condition for non-linear stability of an ALE formulation [17]. However, since the authors’
previous study [4] has showed that the solution in question can be obtained without
DGCL, It is not implemented in HEMLAB for now. For rotor problem, an angular velocity
prescribed specifically for the problem and rigid mesh motion is determined based on
this velocity. Using the angular velocity and location vector, grid velocity can be easily
obtained at any point. The grid velocity are calculated at the mid points of internal
edges. For the boundary surfaces, they are calculated on centroids of each facet belonging
to points on an edge. By this way, second order accuracy is preserved on boundary as well.
The boundary conditions are imposed as weak-Riemann boundary condition using Roe
flux difference scheme, assigning right state as prescribed farfield boundary condition, on
the farfield. Weak-prescribed boundary condition is emposed on slip wall whereas strong
boundary condition is implied on no-slip wall on the rotor surface.

3 APPLICATION ON FLOW AROUND HEAVING/PITCHING AIRFOIL

Resolving flow physics over moving bodies with high order accuracy is a challenging
goal. A workshop, High-Order CFD Workshop (HiOCFD), was established to test the
behaviours of different codes under challenging cases. They determined several cases to
asses behaviours of code on moving mesh problems. One of them was determined for
4th meeting of the workshop (HiOCFD4). In the case, flow around NACA0012 airfoil in
heaving and pitching motion was examined. In the scope of this study, we assesed the
same cases, which are named as case 1 and case 2 in BL3 test case (heaving and pitching
airfoil) in HiOCFD4 [18], and compared the results with the results from HiOCFD4 [19].

The case 1 assesses pure heaving motion with a prescribed function of grid motion.
In HiOCFD4, researchers used high order methods such as Discontinuos-Galerkin. The
distance of farfield is 100 chord from the body in these simulations. Even if HEMLAB
is second-order accurate and farfield is 10 chord above from the body, the solution has a
good conformity with the codes in HiOCFD4 as seen in Fig. 3. In addition, flow field can
be seen in Fig. 1. Based on the solutions of Wukie et al. [20], very similar patterns are
captured in vorticity contours.

Case 2 combines pitching and heaving motion in order to align flow. There are differ-
ences between the codes in HiOCFD and HEMLAB, however it might be a consequence
of that farfield is close to the body. Flow field can be seen in Fig. 2.

4 APPLICATIONS ON FLOW AROUND S76 MAIN ROTOR

Solution of flow field around S76 main rotor was proposed under AIAA Hover Prediction
workshop. In this study, swept-tapered configuration is investigated. The rotor has 4
blades with main characteristics of each blade given in Tab.1. Rotor has 3 different
airfoils along the span: SC1013R8, SC1095R8 and SC1095. Taper ratio and sweep angle
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(a) t=0.5s (b) t=1.0s (c) t=1.5s (d) t=2.0s

Figure 1: HiOCFD4 heaving airfoil (case 1) case vorticity contours over time.

(a) t=0.5s (b) t=1.0s (c) t=1.5s

Figure 2: HiOCFD4 heaving-pitching airfoil case (case 2) vorticity contours over time.

Figure 3: Performance parameter comparison for case 1 (left) and case 2 (right) .

of tip region are also shown in Tab.1. The geometry of rotor blade and twist distributions
along the span are drawn in representative figure 4.

Table 1: Characteristics of the S-76 main rotor blade

Parameters Values

Number of blades 4
Rotor solidity 0.07043

Cut-out location(%R) 19
Tip location(%R) 95
Tip taper Ratio(%) 60
Tip sweep(LE) 35
Radius(m) 6.704

Ref. chord(m) 0.371
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Figure 4: S76 main rotor geometry.

4.1 Computational Grids

The grid structure directly effects the results. As previously said, this effect can become
obvious in such a complex flow analysis. However, the current analyses utilise anisotropic
mesh adaptation. Therefore, high accuracy results can be achieved, creating relatively
simple mesh topologies in the initial phase.

4.1.1 Blade Surface Mesh

Unstructured blade surface mesh is shown in Fig. 5. 235 points are used along the span
where the number of chord-wise vertices is 59 at the root and 44 at the tip. Span-wise
points are aligned more often at the root and tip to capture the tip and root vortices.
Due to the high twist rate and different shapes across the span, surface capture is hard to
achieve with unstructured grids without using extreme amount of nodes. Therefore, we
created a boundary-layer like surface meshes at the leading and trailing edges. These are
extended along the chord. The surface mesh is shown in Fig. 5.

Figure 5: Blade surface mesh of the S76 main rotor.

4.1.2 Volume Mesh

The grid topology can be seen in Fig. 6. The spacings are enlarged step by step as
moving away from the body. The near-body zone has a cylindrical shape with 1.3R height
and 2R diameter. In this zone, a uniform spacing as 0.015R is used. The off-body zone
with the spacing of 0.2R also indicates a cylindrical shape. However, in this time, the
height of the cylinder is 5.4R while the diameter is 6R. And the spacings at the farfield
have the value of R where the farfield cylinder elongates 40R in longitudinal direction and
40R in radial direction. As a result, the total vertex number inside the computational
volume becomes 1, 043, 679.
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Figure 6: Computational domain of the Euler simulations.

4.2 Analysis Conditions

The main rotor of S-76 helicopter is practised with 3.5 deg cone angle and 9 deg collec-
tive pitch angle. The analysis was performed when tip Mach number is 0.65 and Reynolds
number is 1.18 million based on reference chord length. The analysis conditions can be
summarized at Tab.2.

Table 2: Hover conditions

Parameters Value

Reynolds number 1.18
Tip Mach number 0.65

Cone angle 3.5◦

Collective angle 9◦

Table 3: Simulation conditions for cases.

Parameters Simulation 1 Simulation 2 Simulation 3

Sensor Function Mach Mach Entropy
Flux Scheme Roe HLLC Roe/HLLC

Solved equation Euler Euler Euler
Time integration scheme 1st Order Dual-Time Stepping

Baseline solution 10 Revolution

Three different simulations were conducted in total. These are shown at Tab.3. In all
of them, Euler equations are solved. First two simulations are comparing flux schemes
Roe and HLLC. The third simulation assess the entropy sensor function. It must be noted
that a baseline solution was applied for 10 revolution before the refinement and, then,
refinement was applied at each revolution. Therefore, adaptation sizes in Tab.3 indicates
only the refinements starting from 11th revolution. The baseline solution also will be
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examined in detail in the following sections.

4.3 Baseline Solution

The baseline solution corresponds to first 10 revolution (10000 time step). We did
not do any refinement during the baseline solution. In previous works, the effect of early
refinement was observed and stated. So that, the rotor was rotated for 10 revolutions
using baseline mesh. Fig. 7 shows the vortex structures. Initially developed vortex ring
moves along the wake and then disappears where the off-body grid starts.

(a) Revolution 1 (b) Revolution 5 (c) Revolution 10

Figure 7: Baseline solution vortex structures.

4.4 Simulation Results

The first simulation was done using Roe flux scheme. Mach sensor function is used for
mesh refinement process. For the first 4 refinement level, the complexity (adaptation size)
of 400000 is used. Then, the next 4 refinement level is done by using the complexity of
800000 whereas last two level is 2400000. At the last iteration, the number of nodes was
8, 249, 524. As expected, tip vortices are captured by Mach sensor, however wake region
is not refined. The vortex strctures and wake layer can be seen in Fig. 8. In addition,
resulted mesh structures are shown in Fig. 10.

(a) Revolution 11 (b) Revolution 15 (c) Revolution 20

Figure 8: Simulation 1 (Mach sensor and Roe scheme) vortex structures.

In the Simulation 1, solution is diverged to negative density at the tip of the rotor where
vortex formation occurs. To overcome this issue, effect of the Harten entropy correction
had to be increased and the simulation could be completed.
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(a) Revolution 11 (b) Revolution 15 (c) Revolution 20

Figure 9: Simulation 1 (Mach sensor and Roe scheme) wake region.

(a) Revolution 11 (b) Revolution 15 (c) Revolution 20

Figure 10: Simulation 1 (Mach sensor and Roe scheme) mesh topology.

(a) Revolution 11 (b) Revolution 15 (c) Revolution 21

Figure 11: Simulation 2 (Mach sensor and HLLC scheme) vortex structures.

In the second simulation we utilised HLLC scheme. Since HLLC scheme is proven to be
positivity preserving [10, 21], the problem with negative density did not occur for HLLC
scheme. The solutions and mesh structures for simulation 2 are shown in Fig. 11 and 13.
The same adaptation sizes as in the simulation 1 were used in this simulation. However,
last three levels had the adaptation size of 2400000. At the last iteration, the number of
nodes was 9, 870, 963.

The third simulation was started using Roe scheme and entropy sensor function. How-
ever, due to the negative density problem, Roe scheme gave non-physical solutions and,
at this time, Harten entropy correction did not work. Therefore, after revolution 15, we
had to switch HLLC scheme. The resulted mesh structures and vortex structures can
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(a) Revolution 11 (b) Revolution 15 (c) Revolution 21

Figure 12: Simulation 2 (Mach sensor and HLLC scheme) wake region.

(a) Revolution 11 (b) Revolution 15 (c) Revolution 21

Figure 13: Simulation 2 (Mach sensor and HLLC scheme) mesh structures.

be seen in Fig. 14 and 16. The refinement levels are designed same as the simulation 2
and there were 23, 127, 097 number of nodes in the domain at the last time step. Since
entropy sensor captured the trailing edge wake sheet as well, node number is excessively
larger than other two simulations. To the authors knowledge, there is no solution in the
literature that captures trailing edge wake sheet and tip vortices using adaptive mesh
refinement. However, this study and previous studies [4] showed that the entropy sensor
can capture the wake layer (trailing edge wake sheet).

(a) Revolution 11 (b) Revolution 15 (c) Revolution 21

Figure 14: Simulation 3 (entropy sensor and Roe/HLLC scheme) vortex structures.

Fig. 17 shows the development of performance parameters(thrust and torque coeffi-
cients) over time step. As seen, thrust coefficients of Mach sensor simulations show better
agreement with the experimental solution where the experimental solutions are obtained
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(a) Revolution 11 (b) Revolution 15 (c) Revolution 21

Figure 15: Simulation 3 (entropy sensor and Roe/HLLC scheme) wake region.

(a) Revolution 11 (b) Revolution 15 (c) Revolution 21

Figure 16: Simulation 3 (entropy sensor and Roe/HLLC scheme) mesh structures.

from Balch and Lombardi’s study [22]. However, they do not show the same behaviour
for torque coefficient. Vise versa is true for entropy sensor simulation. However, since
RANS simulations are not performed, it is early to say which one is the best. The best
solution might be the combination of entropy and Mach sensors. Entropy sensor has an
advantage to capture the wake region whereas it has lack of ability to capture velocity
gradients the farther away from the body. So that, it creates coarse meshes over potential
flow regions, whereas Mach sensor behaves better.

Figure 17: Performance parameter comparison of simulations.

In addition, there can be observed highly non-linear behaviour in the wake region plots
above. In these regions, flow lost its periodicity and becomes highly time-dependent.
So that, asymmetric mesh formations appears in these regions and, maybe, asymmetry
grows the lost of periodicity, which creates problems for wake capturing since the mesh
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adaptation is performed after each revolution.

5 CONCLUSION

We implemented a strategy, employing ALE kinematics on Navier-Stokes Equations,
to deal with moving boundaries in compressible flow problems. First, we validated
the methodology on 2D flow around heaving and pitching airfoil which is proposed in
HiOCFD4 workshop. Then, the algorithm is employed to solve flow around S-76 main
rotor.

The results of S-76 main rotor analysis gave very similar results to the previus study
[4] with SU2 . The simulations proved again that Euler simulations around a rotor can be
performed using an-isotropic adaptive mesh refinement and the refinement can provide
advantages in the speed of the simulation by avoiding unnecessary computational load.
However, until RANS simulations are performed, we can not say that the performance
parameters are accurately estimated by AMR. Another key outcome of this paper is wake
layer under rotor can be captured and refined by entropy sensor function unlike the other
simulations in literature. Entropy sensor, in addition, estimated more accurate figure of
merit than Mach sensor, however, thrust coefficient estimation of Mach sensor is better
than Entropy sensor. To compare them precisely, we need to wait RANS simulation
results. Another point is that Roe scheme does not preserve the positivity when strong
expansion occurs. Since this is the case at the tip of the rotor, Roe scheme failed. Entropy
correction can improve the behaviour of Roe in the case of expansion with the expense of
increased dissipation, however HLLC is found to be better in this study.
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Abstract. As sustainability becomes one of the main challenges of the aerospace indus-
try, we need to find new ways to integrate it into the design phase of aerospace systems.
The Multidisciplinary Analysis and Optimization (MDAO) framework is a great host for
an environmental discipline thanks to its modularity. However current Life Cycle Assess-
ment (LCA) software do not integrate well with other computation tools, and are designed
for low amounts of simulations on massive databases, while MDAO requires often many
iterations with only slight variations. This work presents newly developed tools aiming at
bridging those two valuable methods to enable better use of LCA within MDAO. Symbolic
links between classic design variables and associated LCA parameter, python-based tools
compatible with OpenMDAO, and optimization of the LCA algorithms to allow for multiple
runs on variations of the same overall system makes it possible to integrate LCA consid-
erations inside an MDAO model at reduced performance cost. The resulting framework
makes ecodesign more accessible as environmental impacts can be used inside the design
process, possibly as main objectives or constraints.

Keywords: environment, life cycle, sustainability, multidisciplinary, ecodesign
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1 INTRODUCTION

Integrating environmental concerns in a Multidisciplinary Analysis and Optimisation
(MDAO) framework is challenging, for multiple reasons. The software, the language, and
the people are different between the technical design and Life Cycle Assessment (LCA) of
a project, which means that both tasks are performed at best with slow communication,
at worst completely independently and the environmental analysis is carried out only on
the already finished design. In that context, reducing environmental impact can be done
during an MDAO, but that requires identifying beforehand which variables will impact
the most relevant impacts, and the lack of integrated LCA can lead to important bias
with many variables impacting the environmental aspect of a design being ignored.

Integrating LCA as an environmental discipline inside an MDAO would solve those
problems, as it would give access to all relevant variables to the LCA module avoiding
biases and errors, and also give access to all relevant environmental impact to the rest of
the MDAO model, including as main constraint or objective, to directly optimise using
them and not just analyse the result. This however presents multiple challenges: an
LCA requires access to a lot of data and variables, which increases the links between the
disciplines in the model. Also, as mentioned previously, those two processes are usually
carried out by different departments, and there is an extremely limited choice of tools
that uses the same programming language to be used together. This work presents the
specificity of LCA in an MDAO context, the developed structure to integrate into python,
and two simple examples to illustrate some of the potential benefits of this integration.

2 LIFE CYCLE ASSESSMENT

2.1 Principles

Life Cycle Assessment (LCA, also called Life Cycle Analysis) is a standardized method
to evaluate the environmental consequences of a product or activity across its entire
life. It’s defined by a family of ISO norms [1], from ISO 14040 to ISO 14044, that
can be extended by different standard guidelines, such as the European ILCD [2]. It’s
a very powerful tool to establish impact assessment, compare different products, and
create environmental certifications as the defined methodology ensures the results are as
complete as possible, and that every product tested for comparison or certification will
go through the same fare analysis. LCA methodology is split into four main parts, as
described in Figure 1. All of those need to be carried out properly. [3, 4]

2.1.1 Goal and Scope Definition

The first thing when conducting an LCA is to define correctly the problem. [5] Why
is the study performed? What is the product studied and its purpose? Which impact
are studied? Will it be compared to something else? Answering those questions requires
looking at:

• Choosing a functional unit: the functional unit is a quantitative description of the
service or utility for which the LCA is performed, and will be used as the reference
to scale the output of the impacts and inventory analysis. It will be also the scaling
definition for comparison. For example, when studying a wind turbine or any other
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Figure 1: LCA methodology and ISO norms [1]

source of electricity, a common choice for the functional unit would be 1 kWh of
electricity sent to the network, as it’s the primary product of that wind turbine.
Therefore, every impact would be listed ”per kWh produced” and if compared to
another source of electricity, each output would be scaled to that 1 kWh. [6]

• Defining the scope of the LCA: defining which activities and processes belong to
the life cycle of the product or service that is studied. The life cycle is core to
the LCA methodology, and in this phase, it’s important to consider every step that
will be relevant for the impact assessment, like the conception, extraction of raw
materials, transformations, manufacturing, logistics, utilisation, disposal, recycling,
and others.

• Choosing the studied impacts: selecting and defining the impacts that would be
studied as the output of the LCA. [7] Those can be local ones like local pollution
with micro particles, global ones like the global warming potential (GWP), or even
very application-specific ones, like the space debris generation for an orbital activity.

• Selecting the geographical and time boundaries of the study: most of the impacts
will be time and space dependants, so it’s necessary to define for each aspect in the
scope a time window and a physical location when relevant.

• Identifying the additional requirements for a certification or an official public release:
if the LCA is carried out in order to certify a product or to prove that it fits
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environmental standards defined by an external entity, those can require additional
steps or requirements. If the LCA is intended to be publicly disclosed, the results
need to be reviewed externally.

The goal and scope definition is very important and will influence every other step that
comes after. It will determine the validity of the conclusions based on the LCA results.

2.1.2 Inventory Analysis

After the definition of goals and scope, every flow of any resource within the scope
needs to be collected in an inventory analysis and scaled based on their contribution to
the final functional unit. The analysis often relies on external databases of either generic
flow and products, like Ecoinvent [8], or more specialized ones like the SSSD [9] for the
space sector. The inventory analysis outputs a life cycle inventory, which contains a list
of physical flows for the product or service described by the functional unit.

2.1.3 Impact Assessment

The impact assessment is the translation of the elementary flows of the inventory
analysis into relevant environmental quantities or impacts. The three main steps described
in the ISO 14040 norm are:

• Selection of the impact categories relevant to the choices made during the goal
definition. Those impact categories need to have an environmental model and an
associated indicator that can be quantified from the elementary flows of the inven-
tory analysis.

• Classification of the elementary flows, by selecting the relevant flows for the selected
impact categories and assigning them to the relevant impact.

• Characterisation of the impacts, by converting the classified elementary flows into
values used in the impact categories indicators and environmental models, and then
measuring the value of those impact indicators.

2.1.4 Interpretation

The results of the LCA and the values of the impact indicators are used as described
after the goal definition. In most cases, the previous steps and especially impact assess-
ment will add uncertainties due to the lack of information about an activity or the difficult
correlation between raw outputs and environmental models. [10] Those uncertainties will
also be interpreted. [11]

2.2 Challenges for aerospace

LCA is a generic technique and can be used for any project or object, including
aerospace systems. However, it is mostly used for systems whose environmental impact is
important for the general public. This includes the past years of civilian aviation, espe-
cially commercial aviation, as it has a significant contribution to climate change. [12, 13]
Various LCA had been made for different aspects of civilian aviation. [14, 15] LCA on a
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commercial aircraft reveals that most of the impact, especially on climate change, is due
to the usage of kerosene during flight. [16] For that reason, further studies focus on the
LCA of the fuel itself [17] or the usage of completely different technologies like hydrogen
[18] or electric [19] plane engines.

There is far less available data for space and military projects. Military activities are too
secret to share enough data for an LCA study, and space activities used to be considered
too niche to have a significant impact, thus explaining the lack of extensive LCA. While
an aircraft is not a launcher, the technologies used in aviation are often related to the
ones used in space and this extensive research is a useful starting point for the LCA of a
launcher. A state of the art of LCA in the space sector [20] shows that LCA for launchers
is recent but expanding rapidly. Some reports have been made in the United States [21]
or Russia [22], but ESA [23] is the major agency with the most involvement in LCA.

Space is a growing sector, on its influence on the environment is not negligible anymore
[24, 25], on different impacts like the GWP [26] or the ozone layer destruction [27, 28].
Knowing the impacts of launchers in the high atmosphere has a lot of uncertainties [20],
due to the difficulty of simulating or measuring gas propagation there. [29] This makes it
difficult to know the impact of high atmosphere burning of kerosene [30, 31], the influence
of black carbon [32] or other chemical residues, and the impacts of solid boosters [33–35]
with non-carbon-based fuels.

3 INTEGRATION

3.1 Environment as a discipline

In all previously mentioned studies, and in most LCA studies in general, the environ-
mental assessment is carried out once, on a finished design. This makes it possible to
compare existing products or check for example the compliance of a proposed design with
environmental requirements. However, this means that the environmental parameters are
not optimised directly, as objectives. If we consider an MDAO problem, this out-of-loop
LCA would be modeled as shown in Fig.2. In this example, the LCA is only done after
optimisation and its outputs are entirely decoupled from the design process.

This common approach is generally used because LCA software doesn’t allow integra-
tion of a project in some external development or optimisation tool. This means that in
order to optimise the environmental impact using this structure, one must either do a very
slow iterative optimisation process or extract from the LCA process the main contributing
factors and add them manually in the optimisation loop.

The goal of this work is to integrate directly the entire LCA model inside the opti-
misation loop, to allow for quick and easy access to all of the environmental output of
the LCA and use them as objectives, constraints, or simply internal variables. In that
scheme, an MDAO problem with coupled LCA would have the structure presented in
Fig.3. There, the LCA is fully integrated into the MDAO framework and is usable as any
normal discipline module, which means that its outputs can be used in the optimiser or
another function.
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x̄∗ ȳ ∗

Optimizer x̄ x̄ x̄ x̄

MDA ȳ ȳ ȳ ȳ
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z̄ z̄ z̄
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Technical

Objective
ft

c̄t
Technical

Constraints
c̄t

LCA ȳe ȳe

Environmental

Objective
fe

Environmental

Constraints
c̄e

Figure 2: Generic XDSM diagram with decoupled LCA

To manage both aspects in one single environment, and stay compatible with a lot of
existing projects, this development uses the Brightway 2 [36] and OpenMDAO [37] python
modules. Those are currently the only compatible tools for MDAO and LCA respectively.

3.2 Database linking

Linking LCA with a technical MDAO model still requires following the LCA principles
described in Sec.2. Any database in Brightway 2 [36] format would work.

3.2.1 Goal and Scope Definition

The Goal and Scope Definition has to be carried out like a normal LCA study. It’s
especially important to think of the intended coupling between the environment and other
disciplines, and thus considering the following points:

• the functional unit should be directly related to the output of the overall MDAO
model;

• the scope should integrate at least everything modeled in the MDAO;

• the studied impact may be used as constraints, objectives, or other variables within
the MDAO framework.
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x̄∗ ȳ ∗

Optimizer x̄ x̄ x̄ x̄

MDA ȳ ȳ ȳ ȳ
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Disciplines
z̄ z̄ z̄

LCA ȳe ȳe

ft , fe Objectives ft , fe

c̄t , c̄e Constraints c̄t , c̄e

Figure 3: Generic XDSM diagram with integrated LCA

3.2.2 Inventory Analysis

The Inventory Analysis is the most important part of the coupling between MDAO
and LCA. After completing the inventory analysis like a normal LCA, all of the inventory
values that link with a MDAO variable need to be identified. In their declaration inside
the MDAO framework, they need to be associated with the corresponding environmental
database entry from Brightway 2. [36] That way, every time the LCA computation is
done, those values are updated with their current value in the other MDAO discipline,
hence creating the link between the environmental discipline and the others.

3.2.3 Impact Assessment

The impact categories are selected based on the goal definition and should be fixed
throughout the optimisation process. The classification and characterisation is done using
Brightway 2. [36]

3.2.4 Interpretation

The results of the LCA and the values of the impact indicators are used as planned
in the scope definition, which means in most case converted into variables usable in and
MDAO framework.
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4 EXAMPLES

4.1 Sellar problem

4.1.1 Definition of the normal problem

The Sellar problem is a common example used to demonstrate and test the OpenMDAO
library [37]. It can be mathematically described as the following optimisation problem:

min : x21 + z2 + y1 + e−y2 (1)

w.r.t. : x1, z1, z2 (2)

subject to : (3)

3.16− y1 <= 0 (4)

y2 − 24.0 <= 0 (5)

4.1.2 Multi-objective environmental variant

We assume arbitrarily that the Sellar problem describes an actual physical product,
where y1 would describe a quantity of steel and y2 a quantity of wood. These two variables
will now be linked to their respective entries in the environmental database, here ecoinvent
v3.8 [8]. The new environment module is configured to output the GWP impact of that
system, only made of these masses of wood and steel, using the ReCiPe midpoint GWP100
method [38]. This integration gives us the new MDAO model highlighted on Fig. 4.

x , z1, z2 z1, z2 x , z1

Discipline 1

y1 = z21 + z2 + x1 − 0.2y2
y1 y1 y1 y1

y2
Discipline 2

y2 =
√
y1 + z1 + z2

y2 y2 y2

Objective

f = x2 + z1 + y1 + e−y2
f

Constraint 1

g1 = 3.16− y1
g1

Constraint 2

g2 = y2 − 24.0
g2

LCA GWP

Figure 4: XDSM diagram of the Sellar problem augmented with an environment module

A multi-objective optimisation adding the newly computed GWP as the second objec-
tive is carried out. Using the NSGA-2 [39] algorithm implementation from the library
Pymoo [40], with 50 individuals in the population and using a tolerance of 10−2 on the
objectives as a termination criterion, it gives the Pareto front on Fig.5. The 2 extreme
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points of the front are the result of a single objective optimisation using COBYLA [41]
and are obtained with the values in Table 1.

Figure 5: Pareto front of the Sellar optimisation problem augmented with an environment module

Table 1: Design variable and objective values for the extreme points of the Pareto front

x1 z1 z2 GWP Sellar
(kgCO2eq) objective

3.52 7.88× 10−9 3.04× 10−8 15.50 15.69
(≈ 0) (≈ 0)

1.06× 10−8 1.98 2.59× 10−9 15.83 3.18
(≈ 0) (≈ 0)

Using this technique, we can immediately assess the compromise on our original objec-
tive function if choosing a solution better for our chosen environmental parameter. It’s
important to note here that the Sellar problem doesn’t represent any real problem and
that any entry in any environmental database could have been assigned to any accessible
variable from the OpenMDAO model. The next example presents an instance where the
database and entries used actually match the technical problem.
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4.2 Hybridised twin-turboprop aircraft

4.2.1 Hybrid Beechcraft King Air

The Beechcraft King Air is a line of twin-turboprop utility aircraft produced at more
than 3000 units over 60 years and is therefore a good base for a hybrid aircraft. The library
Openconcept [42, 43] proposes an architecture based on the King Air C90GT model, with
a 3.75t MTOW and originally two 550shp turboprop engines. This aircraft is modified
with the addition of an electric motor on each propeller, with a rating of at most 500hp
and alimented with a battery of at most 2250kg and a specific energy of 450Wh/kg. The
MTOW can be increased up to 5.70t.

4.2.2 Definition of the problem

The aircraft model of the King Air C90GT is modified with a hybrid system, which
adds 7 design variables to the problem: engine power, motor power, battery weight, fuel
capacity, cruise hybridisation, climb hybridisation, and descent hybridisation. To ensure
the aircraft still flies, the model adapted in Openconcept [42, 43] adds 2 more design
variables: MTOW and wing surface. The minimum and maximum values of these are
presented in Table 3, with the initial value in the optimiser.

Our study focuses on two main objectives, the range and the global warming potential
impact (GWP). The range is verified by simulating a trajectory. For the GWP, we use
a simple LCA analysis using the ecoinvent v3.8 [8] database. Like the previous example,
the output used is the ReCiPe midpoint GWP100 method [38]. The database links are
as shown in Table 2. When available, the location of the entry is set to Europe.

Table 2: Environmental coupling for the hybrid aircraft model

model parameter Ecoinvent v3.8 entry
battery weight ’battery cell production, Li-ion’
motor weight ’electric motor production, vehicle’
engine weight ’internal combustion engine production, passenger car’1

empty weight2 ’aluminium production, primary, ingot’
fuel used ’market for kerosene’
electricity used ’market group for electricity, low voltage’

It is assumed that the aircraft will fly a thousand cycles at maximum range after being
built. This model is obviously simplified here; but the idea of this example is that any
design team with a more precise model and a better-suited database, or with access to
a dedicated environmental study, can use those in a similar table to easily improve the
environmental model being computed.

1Ecoinvent does not include an entry for aircraft engine.
2Excludes motors, engines, and batteries.
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4.2.3 Single objective optimisation

Table 3 presents the design variables values and results after optimisation for this
problem, with the range fixed at 400NM and using the GWP as the sole objective, using
COBYLA [41]. Figure 6 presents the resulting trajectory and energy consumption for
this 400 nautical miles range solution.

Table 3: Example of hybrid aircraft optimisation for a range of 400NM

variable min init max value units
MTOW 4000 5000 5700 5700 kg
wing surface 15 25 40 34 m2

engine power 0 1000 3000 298 kW
motor power 450 1000 3000 652 kW
battery weight 20 1000 3000 1607 kg
fuel capacity 500 1000 3000 500 kg
cruise hybridisation 0 0.5 1 0.71
climb hybridisation 0 1 1 0.785
descent hybridisation 0 0.5 1 0.337

GWP 0.712 kgCO2eq/km

As expected, the electrification reduces both the fuel consumption and the range of
the aircraft. In order to minimise the size of the engine and stay in the best efficiency
window, the engine will run almost always at the same power setting while the differences
in throttle setting will be absorbed by the electric system, which is always close to 100%
efficiency.
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Figure 6: Optimal trajectory and energy utilisation for a hybrid aircraft with 400 nautical miles range

4.2.4 Multi-objective optimisation results

A multi-objective optimisation of the same aircraft design problem adding the range
as the second objective instead of a fixed parameter is carried out. Using the NSGA-2
[39] algorithm implementation from the library Pymoo [40], with 12 individuals in the
population and using a tolerance of 10−2 on the objectives as a termination criterion, it
gives the Pareto front on Fig.7.

As expected, to increase the range of the aircraft the electric part of the hybrid system
has to decrease, which leads to higher fuel consumption and in the end higher impact on
the climate. With a range of 300NM or less, the cruise and descent are fully electric and
the engine is only used for takeoff. For a range of more than 500NM, the engine produces
more than half of the power during cruise.
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Figure 7: Pareto front for the multi-objective hybrid aircraft optimisation

A reduction of the range from 500NM (1.1kgCO2eq/km, 50% hybridisation) to 370NM
(0.56kgCO2eq/km, 78% hybridisation) means a 26% reduction in range implies a 50%
reduction in CO2 emissions. And because our model uses life cycle assessment and not
just fuel consumption, this includes other effects that penalise the hybrid aircraft, such
as the production of the aircraft itself, with costly batteries and a shorter lifespan for the
shorter range design.

5 CONCLUSION

The two simple examples presented highlight the potential of linking directly LCA to
a MDAO model. By having access to the environmental impact in the main optimiser,
we can use them as the main objective, like the GWP here, but given that they behave
like other variables, they could have also been used as constraints or within another
discipline and propagated further into the model. This approach also eliminates many
biased in ecodesign, as the environment-related variables are computed using a proper
methodology. In the aircraft example, that means including manufacturing, electricity,
and other greenhouse gases instead of focusing on simply the carbon dioxide emitted by
burning fuel in-flight.

Some limitations still appear: the added complexity may impair the computational
performance of the MDAO model, and LCA result can be given with an associated un-
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certainty, for which the amplitudes can vary enormously depending on the given problem;
this uncertainty would be ignored when used as MDAO variables. Furthermore, the lim-
ited choice of common tools limits the application to only work with OpenMDAO and
Brightway 2, which also limits the number of potential users. But the test results are
promising, and further development may reduce uncertainties and performance penalties,
and simplify the process to make it more accessible to inexperienced users. This idea will
be applied in the future to complete aerospace models, especially realistic launchers, with
extensive LCA to promote this ecodesign methodology for ambitious projects.

ACKNOWLEDGEMENTS

This work was supported by the Royal Melbourne Institute of Technology (RMIT) and
the Toulouse graduate School of Aerospace Engineering EUR TSAE grant, 17-EURE-
0005.

REFERENCES

[1] ISO. Environmental management. Life cycle assessment. Principles and framework.
2020. ISBN 978-0-539-01348-1. OCLC: 9521571302.

[2] I. for Environment and Sustainability (Joint Research Centre). International Refer-
ence Life Cycle Data System (ILCD) Handbook :general guide for life cycle assess-
ment : detailed guidance. Publications Office of the European Union, 2010. ISBN
978-92-79-19092-6. URL https://data.europa.eu/doi/10.2788/38479.

[3] M. Z. Hauschild. Introduction to LCA Methodology. In M. Z. Hauschild, R. K.
Rosenbaum, and S. I. Olsen, editors, Life Cycle Assessment: Theory and Prac-
tice, pages 59–66. Springer International Publishing, Cham, 2018. ISBN 978-3-
319-56475-3. doi:10.1007/978-3-319-56475-3 6. URL https://doi.org/10.1007/

978-3-319-56475-3_6.

[4] O. Jolliet, M. Saade-Sbeih, S. Shaked, A. Jolliet, and P. Crettaz. Environmental
Life Cycle Assessment. CRC Press, 2015. ISBN 978-1-4398-8770-7. URL https:

//books.google.ae/books?id=LYvwCgAAQBAJ.

[5] M. A. Curran. Overview of Goal and Scope Definition in Life Cycle Assessment.
In M. A. Curran, editor, Goal and Scope Definition in Life Cycle Assessment, LCA
Compendium – The Complete World of Life Cycle Assessment, pages 1–62. Springer
Netherlands, Dordrecht, 2017. ISBN 978-94-024-0855-3. doi:10.1007/978-94-024-
0855-3 1. URL https://doi.org/10.1007/978-94-024-0855-3_1.

[6] K. R. Haapala and P. Prempreeda. Comparative life cycle assessment of 2.0
MW wind turbines. International Journal of Sustainable Manufacturing, 3(2):
170, 2014. ISSN 1742-7223, 1742-7231. doi:10.1504/IJSM.2014.062496. URL
http://www.inderscience.com/link.php?id=62496.

[7] R. K. Rosenbaum. Selection of Impact Categories, Category Indicators and Char-
acterization Models in Goal and Scope Definition. In M. A. Curran, editor, Goal

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

115



Thomas Bellier

and Scope Definition in Life Cycle Assessment, LCA Compendium – The Com-
plete World of Life Cycle Assessment, pages 63–122. Springer Netherlands, Dor-
drecht, 2017. ISBN 978-94-024-0855-3. doi:10.1007/978-94-024-0855-3 2. URL
https://doi.org/10.1007/978-94-024-0855-3_2.

[8] ecoinvent Association. ecoinvent Database, 2021. URL https://ecoinvent.org/

the-ecoinvent-database/.

[9] A. Wilson, M. Vasile, C. Maddock, and K. Baker. The Strathclyde Space Systems
Database: A New Life Cycle Sustainability Assessment Tool for the Design of Next
Generation Green Space Systems. Sept. 2018.

[10] E. A. Groen, E. A. M. Bokkers, R. Heijungs, and I. J. M. de Boer. Methods for
global sensitivity analysis in life cycle assessment. The International Journal of Life
Cycle Assessment, 22(7):1125–1137, July 2017. ISSN 1614-7502. doi:10.1007/s11367-
016-1217-3. URL https://doi.org/10.1007/s11367-016-1217-3.

[11] E. A. Groen and R. Heijungs. Ignoring correlation in uncertainty and sensitivity
analysis in life cycle assessment: what is the risk? Environmental Impact Assessment
Review, 62:98–109, Jan. 2017. ISSN 0195-9255. doi:10.1016/j.eiar.2016.10.006. URL
https://www.sciencedirect.com/science/article/pii/S0195925516300907.

[12] R. K. Pachauri, L. Mayer, and I. P. on Climate Change, editors. Climate change 2014:
synthesis report. Intergovernmental Panel on Climate Change, Geneva, Switzerland,
2015. ISBN 978-92-9169-143-2.

[13] D. S. Lee, D. W. Fahey, A. Skowron, M. R. Allen, U. Burkhardt, Q. Chen, S. J.
Doherty, S. Freeman, P. M. Forster, J. Fuglestvedt, A. Gettelman, R. R. De León,
L. L. Lim, M. T. Lund, R. J. Millar, B. Owen, J. E. Penner, G. Pitari, M. J.
Prather, R. Sausen, and L. J. Wilcox. The contribution of global aviation to
anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244:
117834, Jan. 2021. ISSN 1352-2310. doi:10.1016/j.atmosenv.2020.117834. URL
https://www.sciencedirect.com/science/article/pii/S1352231020305689.

[14] A. Johanning and D. Scholz. A First Step Towards the Integration of Life Cy-
cle Assessment into Conceptual Aircraft Design. 2013. URL https://reposit.

haw-hamburg.de/handle/20.500.12738/1372. Accepted: 2020-08-26T09:17:21Z.

[15] A. Johanning and D. Scholz. Conceptual Aircraft Design based on Life Cycle As-
sessment. In ICAS 2014 Proceedings-29th Congress of the International Council of
the Aeronautical Sciences, 2014.

[16] João Lopes. Life Cycle Assessment of the Airbus A330-200 Aircraft. Master’s thesis,
Universidade Técnica de Lisboa, Nov. 2010.

[17] C. Koroneos, A. Dompros, G. Roumbas, and N. Moussiopoulos. Life Cycle Assess-
ment of Kerosene Used in Aviation (8 pp). The International Journal of Life Cycle
Assessment, 10(6):417–424, Nov. 2005. ISSN 1614-7502. doi:10.1065/lca2004.12.191.
URL https://doi.org/10.1065/lca2004.12.191.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

116



Thomas Bellier

[18] H. Nojoumi, I. Dincer, and G. F. Naterer. Greenhouse gas emissions
assessment of hydrogen and kerosene-fueled aircraft propulsion. Interna-
tional Journal of Hydrogen Energy, 34(3):1363–1369, Feb. 2009. ISSN 0360-
3199. doi:10.1016/j.ijhydene.2008.11.017. URL https://www.sciencedirect.com/

science/article/pii/S0360319908015048.

[19] J. Ribeiro, F. Afonso, I. Ribeiro, B. Ferreira, H. Policarpo, P. Peças, and
F. Lau. Environmental assessment of hybrid-electric propulsion in conceptual air-
craft design. Journal of Cleaner Production, 247:119477, Feb. 2020. ISSN 0959-
6526. doi:10.1016/j.jclepro.2019.119477. URL https://www.sciencedirect.com/

science/article/pii/S0959652619343471.

[20] T. Maury, P. Loubet, S. M. Serrano, A. Gallice, and G. Sonnemann. Appli-
cation of environmental life cycle assessment (LCA) within the space sector: A
state of the art. Acta Astronautica, 170:122–135, May 2020. ISSN 00945765.
doi:10.1016/j.actaastro.2020.01.035. URL https://linkinghub.elsevier.com/

retrieve/pii/S0094576520300552.

[21] S. S. Neumann. Environmental Life Cycle Assessment of Commercial Space Trans-
portation Activities in the United States. Thesis, Apr. 2018. URL https://rc.

library.uta.edu/uta-ir/handle/10106/27352. Accepted: 2018-06-05T15:57:18Z.

[22] T. V. Koroleva, P. P. Krechetov, I. N. Semenkov, A. V. Sharapova, S. A. Lednev,
A. M. Karpachevskiy, A. D. Kondratyev, and N. S. Kasimov. The environmental
impact of space transport. Transportation Research Part D: Transport and Envi-
ronment, 58:54–69, Jan. 2018. ISSN 1361-9209. doi:10.1016/j.trd.2017.10.013. URL
https://www.sciencedirect.com/science/article/pii/S1361920917303115.

[23] ESA LCA Working Group. Space system Life Cycle Assessment (LCA) guidelines.
Handbook ESSB-HB-U-005, ESA, Oct. 2016.

[24] A. R. Wilson, M. Vasile, C. A. Maddock, and K. J. Baker. Ecospheric life cy-
cle impacts of annual global space activities. Science of The Total Environment,
834:155305, Aug. 2022. ISSN 0048-9697. doi:10.1016/j.scitotenv.2022.155305. URL
https://www.sciencedirect.com/science/article/pii/S0048969722023981.

[25] J. D. DeSain, B. B. Brady, and A. F. S. Command. Potential Atmospheric Impact
Generated by Space Launches Worldwide—Update for Emission Estimates from 1985
to 2013. 2014.

[26] A. R. Wilson. Estimating the CO2 intensity of the space sector. Nature Astronomy,
6(4):417–418, Apr. 2022. ISSN 2397-3366. doi:10.1038/s41550-022-01639-6. URL
https://www.nature.com/articles/s41550-022-01639-6.

[27] M. Ross, D. Toohey, M. Peinemann, and P. Ross. Limits on the Space
Launch Market Related to Stratospheric Ozone Depletion. Astropolitics, 7(1):
50–82, Mar. 2009. ISSN 1477-7622. doi:10.1080/14777620902768867. URL
https://doi.org/10.1080/14777620902768867. Publisher: Routledge eprint:
https://doi.org/10.1080/14777620902768867.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

117



Thomas Bellier

[28] J. Dallas, S. Raval, J. Alvarez Gaitan, S. Saydam, and A. Dempster.
The environmental impact of emissions from space launches: A comprehen-
sive review. Journal of Cleaner Production, 255:120209, May 2020. ISSN
09596526. doi:10.1016/j.jclepro.2020.120209. URL https://linkinghub.elsevier.

com/retrieve/pii/S0959652620302560.

[29] I. W. Kokkinakis and D. Drikakis. Atmospheric pollution from rockets. Physics
of Fluids, 34(5):056107, May 2022. ISSN 1070-6631. doi:10.1063/5.0090017. URL
https://aip.scitation.org/doi/10.1063/5.0090017.

[30] E. J. L. Larson, R. W. Portmann, K. H. Rosenlof, D. W. Fahey,
J. S. Daniel, and M. N. Ross. Global atmospheric response to emis-
sions from a proposed reusable space launch system. Earth’s Future, 5
(1):37–48, 2017. ISSN 2328-4277. doi:10.1002/2016EF000399. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/2016EF000399. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016EF000399.

[31] M. N. Ross and P. M. Sheaffer. Radiative forcing caused by rocket engine emissions.
Earth’s Future, 2(4):177–196, 2014. ISSN 2328-4277. doi:10.1002/2013EF000160.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/2013EF000160.

[32] M. Ross, M. Mills, and D. Toohey. Potential climate impact of black carbon
emitted by rockets. Geophysical Research Letters, 37(24), 2010. ISSN 1944-8007.
doi:10.1029/2010GL044548. URL https://onlinelibrary.wiley.com/doi/abs/

10.1029/2010GL044548.
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Abstract. System identification plays an important role in the determination of an
aircraft behaviour that helps predict and simulate different scenarios crucial for control,
mission or safety assurance analysis. This work describes the system identification pro-
cess of a medium sized UAV through the usage of limited flight test data and a non-linear
model dynamic simulator. The proposed solution uses parameter based first-order models
to describe the various aerodynamic properties of the UAV. The parameter estimation
is based on a least square error optimization algorithm in a time-domain formulation
starting from a low-fidelity aerodynamic analysis solution. The work focuses on the lon-
gitudinal motion by using routine flight test data of pitch down and pitch up manoeuvres
to excite the longitudinal dynamics. The optimization geared towards parameter tuning
used a combination of pitch and altitude UAV model response as measure of accuracy.
Very significant improvements in the UAV model response are obtained with the resulting
optimizer found relevant longitudinal aerodynamic and control derivatives. The pitching
moment derivatives proved to be the most important parameters, as expected. The process
hereby described is meant to be usable on any fixed-wing UAV with limited planned flight
test data achieving reasonable accuracy.

Keywords: aircraft design, optimization, aerospace, system identification, aircraft dy-
namics
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1 INTRODUCTION

System identification is a field of study that encompasses the search for the optimized
characterization of a system, from which, a simulated system can be created to not only
explore simulation environments but also gather important information about the system
qualities. In aircraft design, it can be used to determine its dynamic characteristics. By
using different identification schemes, one can develop a model to either simulate flight
conditions or evaluate the overall static and dynamic stability of the aircraft.

Work has been done in this field and several different approaches have been used to
properly set a system identification methodology. This includes pure geometric based
system identification [1], classical flight testing analysis used to do comparison between
model and flight data using non-linear dynamic models [2–6], studies on the usage of big
data and artificial neural networks [7, 8], and machine learning techniques [9] that train
a model to behave as the real one.

Furthermore, extensive knowledge and studies have been produced on the best ways
to conduct flight testing experiments for a simpler and direct construction of a classical
aircraft dynamic model [10–12] where parameter estimation plays an important role. In
a similar manner, the data acquisition implications also play an important role to build
a complete system identification routine with a high degree of accuracy.

This work focuses on the longitudinal dynamic model characterization and optimization
through the usage of limited flight data for a medium sized fixed-wing UAV (Tekever AR5
[13]). Due to the fast growing market and demands, little can be known about medium-
sized UAV’s, especially when flight testing is incompatible with product demands due to
its slow paced data acquisition and treatment.

Here, a solution is presented to cover the gaps in the system identification of an aircraft
with the usage of only routine factory flight verification data. Using consecutive pitch
up and pitch down manoeuvres (used in structural flight testing), a dynamic model con-
structed is used to optimize and minimize the error between observable data and simulated
data.

Due to data sensitivity of the studies conducted to Tekever, the results are shown in
non-dimensional form. However, they are believed to be reproducible on any aircraft with
similar low flight database.

2 BACKGROUND

For a contextualization of the work, a brief review of the most prominent subjects is
presented.

2.1 Fixed Wing Aircraft Equations of Motion

The equations of motion that describe the behaviour of a rigid body motion in a 6
DOF system in time can be expressed as

Ẋ = f(X,U) , (1)

where X, U and f are, respectively, the state vector, control vector and the vector-values
nonlinear function of the individual states and controls [14].

The foundation for the formulation in flight mechanics is Newton’s second law [15]. It

states, for translational motion, that the sum of external forces F⃗ is equal to the change
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of linear momentum and, for rotational motion, that the sum of external moments M⃗ is
equal to the rate of change of angular momentum,

F⃗ =
d

dt
(mU⃗)E =

d

dt
(mU⃗)B + Ω⃗× (mU⃗)B (2)

M⃗ =
d

dt
([I]Ω⃗)E =

d

dt
([I]Ω⃗)B + Ω⃗× ([I]Ω⃗)B (3)

where m, U⃗ , [I] and Ω⃗ represent the mass, velocity vector, inertia tensor and angular
velocity of the rigid body, respectively. The subscripts E and B refer to the Earth and
body (aircraft) references frames.

The notation used for the position, aircraft velocity, aircraft angular velocity, forces
and moments, is respectively,

RE =



xE

yE

zE


 , UB =



u

v

w


 , ΩB =



p

q

r


 , FB =



X

Y

Z


 , MB =



L

M

N




An inertial Earth-fixed frame is used where the x, y and z axes are oriented towards
North, East and Down, respectively. For the aircraft, a body-fixed frame is used where
the body x, y and z axis point towards the nose, right wing and the aircraft bottom,
respectively. The model used neglects the structural dynamic behaviours (rigid-body as-
sumption) and uses the complete 6 degrees of freedom equations - the attitude or kinematic
equations, which provide the aircraft rotation rate equations as





ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ

θ̇ = q cosϕ− r sinϕ

ψ̇ = q sinϕ
cos θ

+ r cosϕ
cos θ

, (4)

where ψ, θ and ϕ are the Euler angles that correspond to yaw, pitch and roll, the force
equations, which describe the translational motion as





X −mg sin θ = m(u̇+ qw − rv)

Y +mg sinϕ cos θ = m(v̇ + ru− pw)

Z +mg cosϕ cos θ = m(ẇ + pv − qu)

, (5)

and the moment equations, which describe the rotational motion assuming a symmetric
aircraft (xz-plane), as





L = Ixxṗ+ Ixz ṙ + (Izz − Iyy)qr + Ixzpq + hzq − hyr
M = Iyy q̇ + (Ixx − Izz)rp+ Ixz(r

2 − p2) + hxr − hzp
N = Ixzṗ+ Izz ṙ + (Izz − Ixx)pq +−Ixzrq + hyp− hxq

(6)

The aircraft model is constructed through the description of the forces and moments
due to the state variables, which is the description of the force and moment coefficients.
Generally, the coefficients are a non-dimensional characterization of the forces and mo-
ments, as
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CX =
X

qdS
, CY =

Y

qdS
, CZ =

Z

qdS
, Cl =

L

qdSb
, Cm =

M

qdSc
, Cn =

N

qdSb
, (7)

where qd = 1
2
ρV 2, S, c and b represent the dynamic pressure, reference area, reference

chord and reference span, respectively. The pursuit of this work is the identification of
the derivatives of these coefficients with respect to the state variables.

2.2 System Identification

System identification is the process of determining the mathematical model of a real
system that best predicts the outputs of a system given certain inputs [10]. Generally,
this process is composed by four elements [16]: data collection, selection of the model
structure, selection of the system Identification method and optimization of the model.

For the data collection, different types of sensors and data acquisition techniques can be
developed and used to better retrieve the needed dataset for the best possible validation
and/or creation of a model. Generally, the data collection aims to retrieve the data in a
time domain or frequency domain. Knowing a priori an approximation of the dynamic
characteristics of the UAV can help excite the needed frequencies to determine the natural
dynamic response of the system, enabling a better estimation of the model. A time domain
analysis is, however, simpler and more direct to use.

The model structure is the mathematical principles used to build the computational
model aimed to predict the behaviour of the real system. It is one of the most important
decisions as choosing an incorrect model can lead to a partially described system [16].
Several works have been done with different model approaches for the description of the
system: linear force and moment coefficient models with non-linear dynamic models [2–6],
inclusion of structural deformation due to flexible wings [17] and a physics-based neural
network approach [8]. This work focuses on the usage of a non-linear dynamic model with
polynomial based equations to describe the influence of the state variables in the forces
and moments.

The system identification method will determine the parameter estimation error us-
age. Common methods for aircraft estimation include the output-error method and the
equation-error method [10]. The equation-error typically uses a least-squares regression
to minimize the difference between forces and moments computed through the data ac-
quired and the ones predicted by the model. On the other hand, the output-error method
minimizes the weighted sum of squared differences between measured outputs and model
outputs. This work uses a version of the latter with a choice on the observable variables
as well as the weight given to each state variable output-error.

The final step is the optimization and validation model. Using the chosen model
and identification method, the model is incrementally refined until the desired response
accuracy is achieved. This process can involve the usage of different flight test data and
optimization routines for an automatic correction of the model parameters. Figure 1
shows a summarized overview of the system identification process used in this work.

3 PRELIMINARY AIRCRAFT IDENTIFICATION

An initial model is created using low-fidelity aerodynamic tools, propulsion gathered
data treatment and point mass inertia assessment. The aerodynamic and control co-
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Figure 1: System identification methodology.

efficients in this model will then be optimized to achieve a better identification of the
UAV.

3.1 Aerodynamics

The first aerodynamic estimate is provided using Athena Vortex Lattice (AVL) [18]
analysis through the usage of vortice lattice method (VLM ). This aerodynamic model is
based on potential flow theory and, thus, is an initial low-fidelity estimation of the aircraft
properties. Figure 2 previews the aircraft in the AVL software. A gapped wing was used
to better represent the lift reduction zone due to the fuselage presence.

Figure 2: Tekever AR5 model in AVL.

The purpose is to build a longitudinal (and lateral) model of the aircraft to characterize
the dependence of aerodynamic forces and moments with the longitudinal (and lateral)
dynamic and control variables.

From an aerodynamic perspective, it is convenient to use the stability frame, in which
the x axis points towards the longitudinal velocity, the y axis towards the right wing and
the z axis following the right hand rule. To transform the lift CL and drag CD coefficients
from the Earth-fixed frame to the stability frame, assuming zero heading ψ and roll ϕ,

[
CX

CZ

]
=

[
− cos(θ) − sin(θ)
sin(θ) − cos(θ)

][
CD

CL

]
, (8)

In this work, each force and moment coefficient is described as a sum of functions for
each state variable and control position. For the longitudinal motion, a generic aerody-
namic force or moment coefficient is written as

CA = f0(α) + f1(α̇) + f2(q) + f3(δe) + f4(δt) , (9)
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where each function fi can be presented as a linear model for simplicity, or more complex,
such as higher order polynomial or non-polynomial functions.

3.2 Propulsion

The Tekever AR5 has a twin piston engine configuration where both engines rotate in
the clockwise direction when seen from the aircraft tail. To model these, the engine and
propeller modules in JSBSim were used along with a correction of the propeller curves
for both power and thrust. This model includes the induced moments generated by the
engine and propeller rotations.

The lack of wind tunnel data created a gap in the understanding of the engine and
propeller behaviour under a free stream velocity. Thus, little can be known other that
the static thrust. However, using initial flight data for different flight regimes (cruise,
climb and descent), different working points for the propulsion unit can be particularly
and analysed. This, coupled with the aerodynamic forces characterization (drag) can be
sufficient to build a propulsion model that, for the same conditions of flight, produces the
same outputs.

Using simple trimmed longitudinal flight conditions, and the coefficients for thrust
force CT = T

qdS
and weight CW = W

qdS
, the equations of motion for the translation in the

longitudinal x and vertical z aircraft axes lead to

{
CX sin(θ)− CZ cos(θ) + CT sin(θ)− CW = 0

CX cos(θ)− CZ sin(θ) + CT cos(θ) = 0
. (10)

By using the aerodynamic model, one can determine the lift CL and drag CD coefficients,
from which, the CX and CZ force coefficients can be determined using Eq.(8). Knowing
the weight W of the UAV, the thrust coefficient CT generated can then be calculated.

For each data point available and knowing the amount of fuel consumed, this approach
can lead to an accurate propulsion model deeply connected to the UAV aerodynamic
model. However, the propulsion model is only correct if the aerodynamic assumptions
are exact. Nonetheless, this assures that the thrust response will be the same in terms
of power consumption and RPM. Furthermore, it assures that, for the same data points
used, the same equilibrium would be found with the model.

This model is ultimately encapsulated in two propeller curves - the power CP and
thrust CT coefficient curves, used by the JSBSim model to calculate both thrust and
power as as well as all the consequent forces and moments generated by each engine unit.

3.3 Inertia

The inertia of the aircraft is built with two different types of mass data: fixed point
masses and variable point masses. The first describe all static payload and the airframe
weight, the latter describe those that area variable, such as fuel, or whose position change.
The description of the aircraft in point masses assumes that the mass body inertia IC
about its centre of mass is negligible when compared to the parallel theorem component
of the inertia, resulting for the moments of inertia

Iii = ICii
+md2i ≈ md2i , (11)

and for the products of inertia
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Iij = ICij
−mdidj ≈ −mdidj , (12)

where m is the point mass and di and dj represent the distance of the point mass to the
i and j axis, respectively.

3.4 Dynamic Model

The dynamic model is derived from the JSBSim capabilities. This software allows the
choice of the force and moment axes, in which any dependency can be formulated, from
constant contributions to n-variable functions as described in Eq.(9).

Using the concept formulated in Section 3.1, each longitudinal moment and forces
are described by setting a function for each state and control variable. Furthermore,
the model allows for the definition of the inertia of the body. Meaning, each mass or
inertia contribution can be fed into the model during optimization cycles. The lateral
contributions of the system are neglected for this case study, as the interest lays on the
longitudinal motion.

The model is effectively a non-linear 6 degree of freedom construction of the equations
presented in Section 2.1. The way the software proceeds with each step calculation is
shown in Figure 3, where, from the current state variable solution, each force and moment
contribution is calculated and fed into the non-linear equations scheme, from which the
state variables are retrieved and used once again to begin a new step calculation cycle.

Figure 3: Force and moment calculations overview on JSBSim.

The JSBSim [19] software package includes Runge-kutta (RK) and Linear Multistep
Methods (LMMs) to solve the dynamic system of equations. The default methods depend
on the equation set being numerically integrated in time. Translational and rotational
rate equations (Eqs.(5) and (6)) use a second-order Adams-Bashforth-Moulton (ABM)
method

XABM(t+ ∆t) = X(t) + ∆t

[
3

2
Ẋ(t)− 1

2
Ẋ(t−∆t)

]
, (13)

and the kinematic equation (Eq.(4)) uses a second order RK method





XRK(t+ ∆t) = X(t) + 1
2
(k1 + k2)

k1 = ∆tf(X, t)

k2 = ∆tf(X + k1, t+ ∆t)

. (14)
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The time step ∆t was set to 0.0083 seconds, which corresponds to a frequency of 120Hz,
believed to capture sufficient detail of the dynamics of the system.

4 EXPERIMENT AND SIMULATION DESIGN

An important part of the problem is the experimental data available. In this work,
routine structural test flight data is used as flight database for optimization purposes. The
experiment consists of trimmed flight followed by pitch up and pitch down manoeuvres
where the longitudinal motion is highly predominant. An example test layout is shown
in Figure 4, where six plots are presented: on the top side, from left to right, the pitch
θ, pitch rate q and estimated angle of attack α are presented; and on the bottom side,
the elevator deflection delta from the initial trim state ∆δe, calibrated airspeed VCAS and
altitude h are presented.

Figure 4: Structural test layout manoeuvre example for a generic Tekever AR5 aircraft.

4.1 Aircraft Data Collection

In this work, the data collection is heavily based on gyroscopic and pitot tube data to
determine the angular position and speed of the aircraft, respectively. The UAV carries a
data collection sensor system capable of retrieving longitudinal velocity, angular position,
rates and accelerations. Angle of attack and sideslip angle estimators exist but their data is
only used for data comparison and not error definition. The control data is also registered
as output commands from the auto-pilot system, from which, the throttle command and
elevator position can be deduced.

The autopilot works at 400Hz, however, the control actuation is limited to 50Hz. Thus,
the control output of the autopilot is only evaluated at the control actuation frequency.
In this work, the JSBSim simulation has a higher frequency than the control actuation,
both to accurately represent it and capture more precisely the fast dynamic behaviours of
the UAV. Thus, a linear interpolation is used between each control data point to evaluate,
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for each simulation step, both the control positions as well as the state of the aircraft.
These are used for error computation and control equivalence between simulation and real
log data.

Although prone to error, the observable data is considered exact. The analysis of the
degree of uncertainty in relation to a specific dataset is out of the scope of this work.
Nonetheless, proven the method, an inclusion of certainty degree for each observable data
enhances the system identification capabilities.

4.2 Simulation Development

This work focuses on the longitudinal simulation of the UAV based on the dynamic
model created. For this, the control commands are fed into the model and the behaviour
of the system is compared with the flight data available. Two important aspects arise
from this analysis: the initial conditions set-up and the control input commands.

For the first, an approximation is used assuming the aircraft starts from a trimmed
levelled flight condition. Using a simulated auto-pilot system, the simulated UAV is
levelled and, after meeting certain convergence criteria, the experiment is started. The
convergence criteria are based on the evaluation of the first derivative of a group of state
variables, namely calibrated airspeed VCAS, vertical velocity ḣ, pitch rate q, roll rate p
and yaw rate r.

For the second, the available control input data consists of distributed time points of
throttle or elevator commands logged by the system in a specific frequency that does not
match the control output frequency. For this reason, as mentioned, a linear interpolation
method is used to evaluate the value of each control in each simulation time step. For the
throttle command, the important data is the RPM of the engines, from which the linear
interpolation is used to calculate the simulated propeller RPM, thus producing, according
to the proposed model, the same thrust and power consumption connected to the model.
As for the elevator command, the important data is the elevator deflection difference from
a trimmed elevator position.

To assure equal dynamic excitation on both the real and the simulated model, delta
(∆) control inputs are used instead of absolute control inputs. This methodology mini-
mizes the trimmed state control input error and focuses on the delta impact on the overall
dynamics of the UAV. Thus, the elevator command fed is the difference between the pre-
vious trimmed state condition. The throttle command, since it is validated with prior
experimental data, will have similar responses for both delta and absolute implementa-
tions.

Since the position of the elevator is only known through an approximation - notice that
the position is calculated by knowing the auto-pilot command and the mechanism itself
(there is no sensor for the angle deflection) - most relevant data is obtained relative to the
trim state, thus discarding the trim point convergence optimization for the pitch moment
(Cm0 is constant throughout).

5 PARAMETER ESTIMATION RESULTS

In this section the parameter estimation results are discussed. First, the problem at
hand is formulated and the algorithm used is validated using a test-case scenario with the
convergence between a generic model the modified version of it. Then, the error function
is formulated based on different definitions and the optimization problem is finally defined.
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Single-manoeuvre and multi-manoeuvre optimizations are conducted where, in the lat-
ter, training and testing data sets are used to both fit the model and evaluate its gener-
alized error based on a maximum likelihood error estimation.

5.1 Problem Formulation

This work uses the JSBSim software package to simulate a manoeuvre scenario with
throttle and elevator control inputs equivalent to a real log data manoeuvre. The purpose
is to verify the error between the constructed model and the real log data to better identify
the system at hand.

For this purpose, a python-based framework was constructed to handle both the sim-
ulation calling as well as the data analysis between model and real data. This framework
allows to additionally compare two JSBSim models and do optimization cycles to con-
verge one into the other. This allowed for the validation of the method, which will be
seen in Section 5.1.1.

The problem is the evaluation of the error between the calculated model data and the
collected real log data. The error in this work is handled with four different variables -
calibrated airspeed (VCAS), altitude (h), pitch angle (θ) and pitch rate (q). These are used
to estimate, through maximum likelihood methods, the similarities between the model and
the real flight data. This work used the root mean squared error (RMSE) to calculate,
for each variable, the associated error. This is further explored in Section 5.1.2.

Additionally, for the optimization, the openMDAO [20] tool was implemented within
the python framework to efficiently handle the optimization process. The SLSQP (Se-
quential Least Squares Programming) optimizer was chosen along with first order finite
differences method to address the objective function (RMSE) vector gradient with respect
to the design variables.

The design variables considered can be found in Table 1. Note that throughout the
parameter estimation analysis, some design variables were not included due to the results
found in Section 5.2. Additionally, two variables are left out from the analysis, the zero
angle of attack pitch moment coefficient (Cm0) and all drag contributions. The former
is left out since it only affects the initial trim point and the latter is not included since
modifying the drag contributions would make the propulsion component unreliable.

The optimization loop is as follows: a first run is executed to determine the initial
objective function value; the vector gradient is calculated through a first order finite dif-
ference method; the SLSQP calculates a first step towards modifying the design variables;
the model is updated according to the new set of variables; the process is repeated until
a certain convergence criterion is met. The optimization process can also be visualized in
Figure 5, where τ represents the vector of design variables.

5.1.1 Validation

To prove the effectiveness of the method formulated, a JSBSim model identification
using another JSBSim model was done for a modified set of initial design variables. The
initial model is a generic model (the first iteration model from the aerodynamic, propulsion
and inertia analyses data) from which modifications were made to verify if the optimizer
could successfully return the model to its original state, both in design variable values, as
well as dynamic behaviour. Figure 7 provides data on the error for the conducted analysis
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Table 1: Design variables considered for the optimization problem.

Variable Definition
Cmα Pitching moment coefficient partial derivative in relation to the angle of attack α

Cmq Pitching moment coefficient partial derivative in relation to the pitch rate q

Cmα̇

Pitching moment coefficient partial derivative in relation to the derivative in time
of the angle of attack α̇

Cmδe

Pitching moment coefficient contribution of the elevator control surfaces. In this
work it is described as either a linear function or a quadratic function. Positive
and negative deflections have different terms.

CLδe

Lift contribution of the elevator control surfaces. In this work it is described as
either a linear function or a quadratic function. Positive and negative deflections
have different terms.

CLα Lift coefficient partial derivative in relation to the angle of attack α
CL0 Zero angle of attack α lift coefficient

CLα̇

Lift coefficient partial derivative in relation to the derivative in time of the angle
of attack α̇

CLq Lift coefficient partial derivative in relation to the pitch rate q

Figure 5: System identification optimization algorithm.

and Figure 6 provides a graphical overview of the conducted optimization obtained using a
combined pitch, pitch rate, calibrated airspeed and altitude error formulation (see Section
5.1.2).

As seen, the optimized results converges to the same dynamic behaviour as the desired
solution. The improvement is also clear as, for all shown curves, the real data and final
solution data are equivalent.

5.1.2 Error Formulation

This work uses two different formulations to calculate the error between real and model
data. For a single variable error, the formulation is the standard root mean square error
(RMSE) normalized with the initial RMSE given as
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Figure 6: Methodology validation using two JSBSim models to prove the convergence of
one towards the other.

E =
RMSEi

RMSE0

=

√∑N
j=1(yj − ŷj)2√∑N
j=1(yj0 − ŷj0)2

, (15)

where N is the number of data points in the manoeuvre, yi the real values and ŷi the
simulated model values, both for a desired error variable.

For a multiple variable error, this work uses an equal based weight formulation, where
the error is the normalized sum of all errors (formulated as stated previously) for all
variables intended,

E =
∑

i

RMSEτi

RMSEτi0

, (16)

where τi represents a generic designated error variable.
Additionally, two different approaches to the determination of yi and ŷi were used.

One classical method was to use the absolute value of the variable chosen for the error
calculation

δyi = yi − ŷi = τi − τ̂i . (17)

The other was to use the step difference between each state during the flight manoeuvre

δyi = yi − ŷi = (τj+1 − τj)− (τ̂j+1 − τ̂j) , (18)

where, in this case, i represents the step index and j the state variable index. The first
formulation, combined with the formulated error expressions, will evaluate the similarity
between the absolute values of the state variables. The latter will evaluate the similarities
between shapes.

To address which error formulation to use, different approaches were conducted using
the aforementioned JSBSim model validation. Four error formulations were tested where
each one was obtained by incorporating an additional variable, starting with the pitch
step error δθ and then including altitude δh, pitch rate δq and calibrated airspeed δVCAS
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errors. The results are compiled in Figure 7, where, for each optimization analyses, the
results for all single variable errors are shown (Fig. 7a) and the error for each variable is
also shown (Fig. 7b).

(a) Improvement in each single error score.

(b) Similarity between validation model variables and optimized model design variables.

Figure 7: Results for the different error formulations with the JSBSim validation scheme.

Results show that increasing the variables in the error formulation helps by averaging
the improvement score in all variables, whilst having better single score in some cases.
Note the improvement in the pitch step error score (δθ) when the optimization error
variables are the pitch step, altitude and pitch rate. Additionally, the similarity between
real values and optimized values also improves due to the usage of a higher number of
error sources. The only exception to improvement are the quadratic terms for the elevator
surface lift coefficient. This can be due to their small influence in the overall longitudinal
dynamics of the system being modelled, where all the other variables seem to have higher
influence in the error minimization.

For these reasons and, since the real optimization problem is more complex, this work
opted for the use of all error variables in the objective function formulation, where the
pitch is used with the step error formulation and all the other variables (altitude, pitch
rate and calibrated airspeed) are used with the absolute formulation. This augments the
capture of all needed data for a best longitudinal model fit.

5.1.3 Problem Definition

Using the previous results as basis, the optimization problem is formulated as

min
∑ RMSEτi

RMSEτi0

w.r.t fτi

, (19)
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where the τ and fτi are the error variables (θ, h, VCAS and q) and the functions f for
each design variable τ considered (as presented in Eq.(9)), respectively. The optimization
algorithm is the SLSQP and the optimization parameters included a tolerance of 1e− 3
and a maximum number of iterations of 200 for convergence criteria.

The following results use these convergence parameters and the same error formulation.
The only exception is the sensitivity analysis of the design variables (Section 5.2), where
the selection of the design variables for the final optimization problem is done using a
single variable error approach.

5.2 Sensitivity Analysis

To assess the impact of the design variables on the optimization problem and sys-
tem identification procedure, a sensitivity analysis was conducted. This analysis also
allowed for the selection of the design variables for the parameter estimation optimiza-
tions conducted. For each variable and each type of single variable error considered, an
optimization was conducted. The compilation of the results are presented in Figure 8,
including the error improvements for each data variable using absolute (Fig. 8a) and step
(Fig. 8b) error formulations in single variable optimizations.

(a) Using the absolute error formulation.

(b) Using the step error formulation.

Figure 8: Improvement in each error variable for all single variable optimization cases.

As seen, the optimization results depend not only on the designated variable but also
on the type of objective (error) function used to evaluate the performance of each solution.
In both cases, the variables Cmα , Cmq , CLδe

and Cmδe
seem to have more impact on the

final results. Variables Cmα̇
, CLα and CL0 have sufficient impact on the optimization

results to be considered in the optimization (> 20%). As for the variables Cmα̇
and CLq ,

their impact on the overall results is minimal, thus, these variables will be discarded.
These results also present the comparison of linear and quadratic representation of the
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elevator δe influence on the aerodynamic forces. Since the quadratic option, in some cases,
benefits the optimizer with increased performance, these coefficients will be used.

5.3 Single-Manoeuvre Optimization

Using the problem definition presented in Section 5.1.3 and the design variable choice
from Section 5.2 the initially built model was optimized using a single flight test manoeu-
vre. Figure 9 shows the solution (Fig. 9a) and the error improvement (Fig. 9b).

(a) Single manoeuvre optimization graphical results.

(b) Single manoeuvre optimization error improvement score.

Figure 9: System identification using a single manoeuvre for the Tekever AR5.

Both the response and improvement scores show that the optimization was successful in
modifying the model to reduce the overall error between log and simulated data. Clearly,
the initial model was divergent and after a certain period of time it evolves into an unstable
condition (high pitch oscillations, very low angle of attack and high altitude loss). On
the other hand, the optimized solution, even if only optimized during a single cycle of
the manoeuvre, is capable of not only approximate the dynamics, but also maintain the
aircraft within acceptable margins of the real values found. The largest improvements were
found for pitch and altitude where the error was also maximum on the initial solution.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

134



Nuno M. B. Matos and André C. Marta

5.3.1 Solution Application

A single manoeuvre optimization is prone to error due to the lack of variability and
different condition manoeuvres. For this reason, first, the solution found is tested with
two example flight test manoeuvres with the same UAV. Figure 10 yield the results for
the manoeuvres tested (10a and 10b), where the initial solution provided to the optimizer
is also presented to verify the improvements visually.

(a) First manoeuvre. (b) Second manoeuvre.

Figure 10: Single manoeuvre optimization validation with two separate independent ma-
noeuvres of the same Tekever AR5 aircraft.

Similarly to the optimized manoeuvre case, the initial and final solution have different
behaviours. The former quickly diverges for the real solution whereas the latter is capable
of maintaining the dynamic of the real UAV. The second manoeuvre seems to be well
fitted, however, for the first manoeuvre, both altitude and calibrated airspeed results have
larger differences and seem to be more prone to error as the simulation time increases.

Nonetheless, the optimization was capable of modifying the model to be more coherent
with the real log data and also maintain stability in multiple cycles of the same manoeuvre,
reducing the gap between the modelled and real systems.

For a statistical analysis, the optimized solution was simulated with eight additional
different similar manoeuvres and the mean and standard deviation of the error was cal-
culated, as shown in Figure 11, for the used and observable error data: pitch (Fig. 11a),
pitch rate (Fig. 11b), altitude (Fig. 11c) and calibrated airspeed (Fig. 11d).

As shown, the optimized solution improves the modelled dynamics by not only having
a lower mean value for the majority of the errors, but also lower standard deviations,
meaning the output of the optimized model is more accurately representing the real log
data found. Additionally, some error cases are better fitted than the optimized manoeuvre
scenario (for example comparing manoeuvre #3 with the used in optimization manoeuvre
#1). This means that the optimized solution is capturing the general longitudinal dynamic
qualities of the real aircraft. However, the mean error and standard deviations are not
ideal, where room for improvement still exists.

Expectedly, overall results vary from the single manoeuvre optimization shown in Sec-
tion 5.3. To further increase the performance of the method, an increased number of
observable data is expected to augment the system identification capabilities by intro-
ducing new dynamics of the same aircraft and reducing the case specific elements of the
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(a) Pitch θ error. (b) Pitch rate q error.

(c) Altitude h error. (d) Calibrated airspeed VCAS error.

Figure 11: Average error and standard deviation of the error results for nine manoeuvres
for the initial and final solution of the single manoeuvre optimization. Manoeuvre #1
was the used manoeuvre for the optimization.

single manoeuvre optimization.

5.4 Multi-Manoeuvre Optimization

To mitigate the single manoeuvre optimization case specific nature, a multi-manoeuvre
approach to the problem was adopted. To achieve this, multiple flight test manoeuvres
were collected and used to better fit the parameter estimated model.

5.4.1 Model Formulation

The combined manoeuvre optimization needs two types of data subsets for the proper
validation of the model. Using as reference the surrogate modelling theory [21], from all
available manoeuvres, 75% are used as training data and 25% are used as validation data.
The former is fed into the optimization problem and is used to calculate the error between
the simulated model and the real flight data. For this, the error function was modified to

E =
M∑

m=1

∑

i

RMSEτi

RMSEτi0

, (20)

where m is the manoeuvre counter, to account for all manoeuvres in an equal weighted
manner. The latter is used to prove the new found optimized model, where the model is
tested with the validation data to check whether the optimization was successful.

All the manoeuvres collected correspond to equivalent flight test procedures with the
same aircraft. The training and validation datasets division was done at random, where
of a total of nine manoeuvres, six were selected for training and the remaining three were
used for validation.

5.4.2 Optimization Results

Following the aforementioned optimization scheme, the initial model solution was opti-
mized using six manoeuvres from a total of nine. Figure 12 presents two of these manoeu-
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vres (#4 in (12a) and #7 in (12b)) with both the initial and final solutions presented.

(a) Manoeuvre #4. (b) Manoeuvre #7.

Figure 12: Multi-manoeuvre optimization results plots for two example manoeuvres used
in the optimization of the same Tekever AR5 aircraft.

Clearly, the final solution found by the optimizer is not only closer to the expected
dynamics of the real flight data, but also has more stability and capability to diverge less
when above the used optimization time for the manoeuvre. In the first example shown
(12a), the final solution correctly models both pitch and altitude response for the shown
four cycles of the nose up and nose down manoeuvres. However, the second example
previews an altitude deviation as the flight time increases.

Comparing to the single-manoeuvre optimization solution, these results show that the
increased number of manoeuvres inside the optimization loop revealed useful data to the
algorithm that allowed for a better dynamic response convergence. The algorithm used
was successful in reducing the gap between modelled and real UAV responses, diminishing
the error for the system identification, for all the used manoeuvres inside the optimization
process.

5.4.3 Model Validation

As seen, the final solution obtained was capable of suitably predicting the real dynamics
of the aircraft, specially in the optimization flight time period used, where above this
time the response of the model can deviate. However, this analysis was only for the used
manoeuvres on the optimization process. To finally validate the final solution, the three
left out manoeuvres for the validation process are analysed.

First, an error analysis was conducted. Figure 13 presents the mean error and standard
deviations of all found solutions - initial, single manoeuvre and multi-manoeuvre - for all
used observable error data: pitch (13a), pitch rate (13b), altitude (13c) and calibrated
airspeed (13d). The marked manoeuvres #2, #5 and #6 are the ones used for validation
purposes and the remaining were used as error source for the optimization.

Compared to Fig. 11, there is a decrease in both the mean and standard deviation
errors for the final solution of the multi-manoeuvre optimization cases, where, for the
used observable data, the final solution model fits well with the real flight log data. The
only exception to the results found was the manoeuvre #9, where both addressed error
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(a) Results for pitch θ error. (b) Results for pitch rate q error.

(c) Results for altitude h error. (d) Results for calibrated airspeed VCAS error.

Figure 13: Average error and standard deviation of the error results for nine manoeuvres
for the initial and final solutions of the multi-manoeuvre optimization.

metrics were maximum. This can be due to poor flight log data of that manoeuvre or the
initial conditions coherence.

Nonetheless, taking a closer look into the validation data (manoeuvres #2, #5 and #6),
the final solution was able to accurately capture the real dynamics of the aircraft using
single cycle portions of flight data from the other similar manoeuvres. Furthermore, the
average and standard deviation error values are similar to the ones found for the optimized
manoeuvres, thus, the qualities captured within the final solution model are representing
the real flight log data. For a deeper look into the validation results, Figure 14 yields the
response for of each manoeuvre using the initial, real and final solutions for comparison.

As seen, the final solution results have similar dynamics in relation to the real flight
data in the duration of the first manoeuvre cycle and also maintain a reasonable accu-
racy as the number of cycles increases. The available data clearly shows an improvement
in the model dynamic response and assures equivalence for the initial moments of the
manoeuvre. Thus, the validation of the algorithm and final solution has found that
the multi-manoeuvre optimization approach is able to accurately capture the real UAV
dynamics with enough broadness that similar manoeuvres can be evaluated without re-
curring to new optimization analysis. The model can be used to test different manoeuvres
or evaluate the aircraft longitudinal dynamics.

6 CONCLUSIONS

This work focused on the development of a system identification optimization frame-
work where a six degree non-linear dynamic model (formulated in JSBSim and based
in simple polynomial functions) was successfully modified, using the SLSQP gradient
algorithm, to accurately predict and emulate real flight longitudinal manoeuvres. Fur-
thermore, it has been shown that the usage of a low number of manoeuvres was sufficient
to accurately correct and modify the model towards an equivalent longitudinal response,
at least for a single cycle of nose up and nose down manoeuvres. The usage of routine
structural flight testing was shown to be sufficient for the optimization of a longitudinal
model that estimates the longitudinal dynamic characteristics of the aircraft.
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(a) Results for the manoeuvre #2. (b) Results for the manoeuvre #5.

(c) Results for the manoeuvre #6.

Figure 14: Multi-manoeuvre results using the three validation manoeuvres of the same
Tekever AR5 aircraft.

The comparison between single and multi-manoeuvre environments concluded that a
broader use of manoeuvres successfully captures more accurately the dynamic response
of a system. However, the single manoeuvre optimization has shown to decrease the error
found in the initial solution and improve the response in other equivalent manoeuvres. The
training/validation subset division has shown to be important for the correct evaluation
and validation of a final solution, where the multi-manoeuvre algorithm proved to be
effective at determining the real UAV longitudinal qualities.

The usage of single cycle portions of complete manoeuvres was shown to be enough
to correctly model the UAV and to acquire sufficient data to allow the final solution to
reasonably follow n cycle manoeuvres.
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[14] B. Stevens and F. Lewis. Aircraft Control and Simulation. Wiley, 1992. ISBN
9780471613978.

[15] W. Phillips. Mechanics of Flight. Engineering case studies online. Wiley, 2004. ISBN
9780471334583.

[16] N. Hoffer, C. Coopmans, A. Jensen, and Y. Chen. Small low-cost unmanned aerial ve-
hicle system identification: A survey and catagorization. 2013 International Confer-
ence on Unmanned Aircraft Systems, May 2013. doi:10.1109/ICUAS.2013.6564775.
Atlanta, Georgia, USA.

[17] G. Dussart, V. Portapas, A. Pontillo, and M. Lone. Flight dynamic modelling and
simulation of large flexible aircraft. In K. Volkov, editor, Flight Physics, chapter 3.
IntechOpen, Rijeka, 2018. doi:10.5772/intechopen.71050.

[18] M. Drela and H. Youngren. Athena vortex lattice. URL https://web.mit.edu/

drela/Public/web/avl/.

[19] J. Berndt. JSBSim: An open source flight dynamics model in C++. AIAA
Modeling and Simulation Technologies Conference and Exhibit, August 2004.
doi:10.2514/6.2004-4923. Providence, Rhode Island, USA.

[20] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor.
OpenMDAO: An open-source framework for multidisciplinary design, analysis, and
optimization. Structural and Multidisciplinary Optimization, 59(4):1075–1104, April
2019. doi:10.1007/s00158-019-02211-z.

[21] A. Forrester, A. Sobester, and A. Keane. Engineering Design Via Surrogate Mod-
elling: A Practical Guide. Progress in astronautics and aeronautics. Wiley, 2008.
ISBN 9780470060681.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

141



AeroBest 2023
Lisboa, 19-21 July 2023
©ECCOMAS, Portugal

VALIDATION OF EXTENDED FAILURE MODELS AND
CRITERIA FOR AEROSPACE COMPOSITES
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Abstract. In the aerospace sector, to cope with the most recent sustainability goals,
aerostructures will need to be designed and built by using advanced materials with unprece-
dented efficiency. Furthermore, performance-based certification using virtual qualification
and certification tools is expected to become widely applied. In this context, research in
advanced composite materials and their failure analysis plays a crucial role for optimiza-
tion of aerostructures. As part of the European Industrial Doctorate (EID) OptiMACS,
focussed on the development and application of new methods and criteria for multidis-
ciplinary optimization of aerospace composite structures, advanced failure criteria and
damage models have been extended to more general stress states, and validated. They
include advanced phenomenological failure models based on invariant structural tensors
for first-ply failure (FPF) “hot-spot” analysis considering general three-dimensional (3D)
stress states. The 3D invariant-based criteria are then used to generate “omni strain”
failure envelopes that enable quick last-ply failure (LPF) analysis of multidirectional com-
posite structures, showing a satisfactory agreement with experimental data under complex
triaxial stress states. It is, therefore, demonstrated that “omni strain” failure envelopes
provide reliable and fast laminate failure analyses that can be particularly useful during
conceptual and preliminary design. Finally, the 3D invariant-based criteria are coupled
with continuum damage mechanics to model damage onset and propagation, and validated
through virtual testing of undisturbed and notched coupons. Application of the continuum
damage mechanics model is demonstrated through a local model of the bolted connection
of a stringer runout, confirming the accuracy of these analyses in the context of detailed
design.

Keywords: Design, failure, polymer-matrix composites (PMCs), aerospace
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1 INTRODUCTION

Materials and structures have been responsible for major improvements in the aerospace
sector, mainly in terms of performance and safety. Among the innovative structural con-
cepts and technologies, the development of advanced composite materials, witnessed dur-
ing the past 40 years, have improved structural performance, reduced operational risk,
and enhanced the overall capability of aerospace vehicle airframes. This growing interest
in using composite materials for aerospace applications is justified by their beneficial me-
chanical properties, such as their very high specific stiffness and strength, which enable
the design of improved lightweight primary structures. Furthermore, as additional bene-
ficial properties, composites are fatigue and corrosion resistant and their properties can
be easily tailored, thus providing additional design flexibility.

In addition to materials and structures, digitalisation is playing and increasingly impor-
tant role in the efficiency of the aerospace sector. Performance-based certification using
virtual qualification and certification techniques is expected to be widely applied, deliv-
ering higher efficiency and reliability than physical testing [1]. In this context, research
in advanced failure models for composite materials are crucial. Fibre-reinforced com-
posite materials proved to represent a valid alternative to traditional light metal alloys,
being able to reduce the weight of aerospace components, while meeting their operational
constraints (i.e., reliability, stability, strength, noise, manufacturability and cost). This
material replacement gave to the designer the flexibility to select the fibre orientation on
a layer by layer basis, building laminated fibre-reinforced composite materials with load-
tailored layups. Additionally, enhanced damage tolerance can be built into the structure,
by suppressing critical damage modes for the benefit of more favourable ones [2]. On the
other hand, this flexibility comes at the cost of a considerably more complex internal ma-
terial architecture. In fact, due to the inherent heterogeneity and anisotropy of laminated
composites, their usage is challenged by the resulting increase of complexity of the design
process. The additional parameters to be determined include the exact layering design
of the structure (i.e., number, sequence, thickness and mechanical characteristics of each
ply) and the manufacturing process to be followed for each component. Furthermore, the
formulation of the design criteria required for the structural sizing optimization process
(consisting of all relevant strength, fatigue, buckling, aeroelasticity, manufacturing and
stiffness constraints) is more challenging due to the employment of these anisotropic ma-
terials. As a direct consequence, a detailed numerical modelling using the Finite Element
Method (FEM) for an entire aeronautic product would result in millions of degrees of
freedom, which is prohibitive for optimization purposes. The structural optimization of
composite structures is therefore nowadays performed at a macro-scale level by consider-
ing homogenized properties for each laminate, which compromises the level of detail of
the resulting optimal design [3–5].

A set of advanced software tools is currently employed within the European aerospace
industry to perform structural optimization, incl. design of civil, military as well as
experimental aircraft. Structural weight, aerodynamic and aeroelastic performance and
stability, structural stability such as buckling, and structural strength are typical design
and performance optimization criteria employed by the industry during preliminary mul-
tidisciplinary design optimization (MDO). However, to performance structural strength
optimization, maximum strain and Tsai-Hill approaches are commonly used, in spite of
being considered inadequate for many loading scenarios [6].
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This work addresses the development of extended and advanced failure models and
design criteria for aerospace composites (Fig.1). The contribution of this work is aimed
at enhancing the industrial MDO software, by improving the performance-based opti-
mization processes, providing more accurate and safe failure predictions. In particular,
this work is focussed on criteria established (i) at the structural level, delivering detailed
and accurate predictions of failure onset in a Finite Element (FE) context, and (ii) at the
coupon and structural detail level to predict detailed damage evolution at local level.

σ11 = σ33 [MPa]

 σ
22

 [M
P

a]

Figure 1: Global view of the European Union’s Horizon 2020 EID OptiMACS —
Optimization of Multifunctional Aerospace Composite Structures [7, 8] — where the
present research work on failure criteria and damage models contributes to an enhanced
“Performance-based optimization”.

2 “HOT-SPOT” PLY AND LAMINATE FAILURE ANALYSIS

After almost sixty years of developments with regards to failure criteria for composite
materials, the desirable aspects of a failure theory have been identified and they can be
summarized as: (i) the ability to generate failure envelopes close to the experimentally
observed failure stress states for different material systems and loading conditions, (ii)
consistency in physics and mathematics, meaning that the criteria should, for instance, not
allow open envelopes (i.e., infinite strength), and (iii) a stress invariant-based formulation
to avoid the inclusion of additional parameters (e.g., the inclination parameters from Puck
theory). For the reasons above, the 3D invariant-based failure criteria from Refs. [9, 10]
were selected to perform “hot-spot” failure analysis and to develop an extended laminate
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Giuseppe Corrado, José Reinoso and Albertino Arteiro

failure theory suitable for optimization purposes.

2.1 “Hot-spot” failure analysis

The implementation of failure criteria in a FE software for “hot-spot” failure analysis
has been recently exploited to accurately predict critical locations in large global models
[11–13]. With the accurate identification of “hot-spots”, it is possible to increase the
modelling resolution at the critical locations only, enabling a more efficient and reliable
global-local analysis, especially when addressing large-scale composite structures.

In this work, intra-laminar failure is predicted using 3D invariant-based failure criteria
[9, 10], formulated based on invariant structural tensors. The onset of delamination is pre-
dicted with Ye’s failure theory [14]. Both criteria were implemented in a post-processing
Python script, compatible with Abaqus/Standard and Abaqus/Explicit, to generate new
element field outputs, by recovering the full stress tensor at each integration point and
computing the failure index for each of the failure modes addressed by the criteria. Thus,
this approach allows the identification of “hot-spots” and the corresponding failure mech-
anisms for damage initiation, creating 4 element output variables to predict fibre and
matrix failure, under tension and compression, and an additional output variable for the
onset of delamination. An alternative implementation is also available through a UVARM
subroutine, programmed in FORTRAN, for Abaqus/Standard.

Figures 2 to 5 show an example of “hot-spot” identification at the coupon level, con-
sidering open-hole (OH) plates subjected to a quasi-pure bending test case [15]. The
predicted failure mechanisms for damage onset are in agreement with the experimental
observations from Ref. [15]. Fibre kinking was observed to govern the failure scenario of
all open-hole laminates. Then, due to load redistribution, in the experiments failure was
suddenly observed on the face under tension due to tensile fibre failure and transverse
cracking.

RP-2

RP-1

Tie constraint

Tie constraint

Figure 2: Computational solid model of an OH plate under quasi-pure bending.
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Figure 3: Reaction force-applied displacement plot of a 25/50/25 OH laminate under
quasi-pure bending. A detailed view is provided next to the plots for the identification of
FPF and the corresponding critical failure mode.
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Figure 4: Reaction force-applied displacement plot of a 50/40/10 OH laminate under
quasi-pure bending. A detailed view is provided next to the plots for the identification of
FPF and the corresponding critical failure mode.

To demonstrate the scalability of this approach, the “hot-spot” failure analysis is also
applied to an aeronautical reinforced panel, targeting the identification of the critical
locations for damage onset in the runout region. The structure under analysis is composed
of a flat composite skin, a composite T-stringer and two bolts. Due to the main assumption
of plane stress states, standard shell models do not account for the full stress tensor,
which is crucial for the runout region where a change of load path takes place [16]. For
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Figure 5: Reaction force-applied displacement plot of a 20/60/20 OH laminate under
quasi-pure bending. A detailed view is provided next to the plots for the identification of
FPF and the corresponding critical failure mode.

this reason, first-order solid elements C3D8R are used to discretize all the parts of the
structure in Abaqus. Furthermore, first-order solid elements allow to properly set the
contact behaviour between stringer and bolts, and between skin and bolts.

The analysis of this model is performed in two different steps: (i) a bolt load is applied
to the two bolts included in the runout panels, by defining the “Pre-tension load” option
in Abaqus and using low-stiffness dummy springs attached to the head of the bolts to
prevent rigid body motions in this pre-load step; and (ii) an external tensile loading is
introduced by defining “Multi-point constraints” (MPCs) at the two ends of the structure,
one to apply the tensile loading and the other to apply the constraints, as schematically
shown in Fig.6. These numerical constraints couple the degrees of freedom of the master
node with those identified as slave nodes, using the perfectly rigid option for this study.

The discretization of the model is done using one element per ply and a smaller element
size in the vicinity of the bolts, where a stress concentration is expected. Then, after run-
ning a geometrically non-linear elastic analysis using Abaqus/Standard, a post-processing
script was run to perform the “hot-spot” identification with the 3D invariant-based failure
theory. Given the large dimension of the model, this study was perform in the regions
close to the runout for both skin and stringer, where FPF was expected to occur.

The results of the “hot-spot” failure analysis are shown in Fig.7 and Fig.8. The onset
of damage in the skin region close to the runout is triggered by fibre kinking, and a similar
failure scenario is observed in the stringer. Experimental results are in agreement with
the qualitative predictions obtained with this approach.

2.2 Extended omni-strain envelopes for laminate failure predictions

The 3D invariant-based failure criteria [9, 10] exploited in the previous section deals
with ply failure, thus requiring that the FE models are based on a ply by ply discretisation.
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Figure 6: Schematic plot of the model and boundary conditions of the stringer runout.

Figure 7: “Hot-spot” failure analysis in the runout region of the stringer. The prediction
for failure onset is computed using the 3D invariant-based failure theory, and the critical
failure mode is fibre kinking.

In addition, their application in “hot-spot” analysis only allows the identification of FPF.
To predict the strength of a composite laminate or structure, LPF analysis may be more
attractive, especially during preliminary design optimization.

To meet the industrial need for fast and practical tools at an early design stage, a
simple approach for the prediction of LPF was recently proposed by Tsai and Melo [17]
based on an extended version of omni strain envelopes. Omni strain failure envelopes, or
minimum failure envelopes, can be identified by taking the inner failure envelope in strain
space, i.e., by finding the controlling ply that would fail first for unit loading strain vectors
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Giuseppe Corrado, José Reinoso and Albertino Arteiro

Figure 8: “Hot-spot” failure analysis in the runout region of the skin. The prediction
for failure onset is computed using the 3D invariant-based failure theory, and the critical
failure mode is fibre kinking.

from 0 to 2π [18]. Omni strain LPF envelopes target the prediction of the continued load-
carrying capability of any laminate after damage initiation [17]. Unlike omni strain FPF
envelopes, which are obtained using intact ply properties, omni strain LPF envelopes are
defined using degraded ply properties, based on a matrix degradation factor (E∗

m) and
micro-mechanics relationships [17].

Exploiting the fully 3D description of failure provided by the invariant-based criteria [9,
10], omni strain failure envelopes can be extended by finding the controlling plies in the 3D
principal strain space [19]. Figures 9 and 10 show the comparison between experimental
strength data from the first World-Wide Failure Exercise (WWFE-I) [20] and the proposed
omni LPF envelopes based on the 3D invariant criteria for a carbon/epoxy laminate
and an E-glass/epoxy laminate, respectively. The predictions of omni LPF envelopes
based on the Tsai-Wu criterion and of a unit circle criterion [17] are also presented. As
can be observed, the envelope obtained with the Tsai-Wu criterion and the unit circle
envelope are slightly more conservative than the envelope obtained with the invariant-
based criteria. The correlation between test data and predictions is excellent, except for
the third quadrant where the predictions seem to overestimate the laminate strength under
biaxial compression. However, those experimental results cannot be considered 100%
reliable, as pointed out also by the organizers of the WWFE-I [20]. Those results were,
in fact, characterized by a large scatter in the mean axial compressive strength, probably
affected by buckling when testing longer specimens. Thus, the predictive capability of the
envelopes cannot be reliably assessed in the compression-compression quadrant.

Figure 11 shows a comparison between 3D omni LPF envelopes and experimental
strength data of an E-glass/epoxy laminate under triaxial stress states from the WWFE-
II [21]. The laminate LPF envelope, obtained by taking the minimum envelope of the
laminate ply orientations in strain space, demonstrates the conservatism of omni LPF
envelopes, which are based on the minimum envelope for any possible ply orientation.
However, in spite of providing conservative predictions, the omni LPF envelopes define,
in a physically-based setting, a safe approach for laminate failure prediction that is inde-
pendent of the particular layup sequence, thus making its application straightforward for
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Figure 9: Comparison between failure envelopes and test results from the WWFE-I for a
carbon/epoxy laminate [19].

Figure 10: Comparison between failure envelopes and test results from the WWFE-I for
an E-glass/epoxy laminate [19].

any laminate of a given material system, which can be a key advantage during preliminary
design.

3 ADVANCED FAILURE MODELS FOR COMPOSITE MATERIALS

Although advanced failure criteria can be implemented to perform “hot-spot” FPF
analysis, identifying the most critical areas for failure onset, it is not sufficient to pre-
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Figure 11: Comparison between failure envelopes and triaxial test results from the
WWFE-II for an E-glass/epoxy laminate [19].

dict the ultimate load of composite laminates or structures, since failure of composites
is governed by a progressive evolution of damage. Furthermore, although laminate fail-
ure theories can be used for “hot-spot” LPF analysis and predict the ultimate load of
composite structures, the obtained predictions are not suitable for detailed analysis and
accurate design of composite structures. To address inelastic deformation and failure of
composite materials and structures, damage models are required.

To predict failure of composite laminates, a frictional smeared crack model [22], formu-
lated in the frame of continuum damage mechanics, is extended to account for the effect of
general 3D stress states in the initiation and broadening of fibre kinking. This is achieved
through a consistent implementation of the damage activation functions based on the 3D
invariant-based criteria [9, 10]. This intra-laminar damage model is then combined with
cohesive elements to also predict delamination onset and growth. The proposed mod-
elling strategy, implemented as VUMAT user-subroutines programmed in FORTRAN for
Abaqus/Explicit, is firstly verified based on single-element tests and through the predic-
tion of the strength of UD coupons subjected to off-axis tensile and compressive loads
(Fig.12 and Fig.13). Then, the proposed modelling strategy is validated against experi-
mental data of the strength of undisturbed and notched (OH) multidirectional laminates,
followed by the local analysis of the critical location of the stringer runout from Sect. 2.1
— see Fig.14. It is observed that delamination governs the failure scenario. To study the
effect of the bolt pre-load, different values of pre-loading were analysed. The predictions
are summarized in Fig.15. As can be observed, the applied bolt pre-load has a minor
influence on the mechanical response of the bolted connection, which is in line with the
experimental findings on the stringer runout.

4 CONCLUSIONS

A set of 3D phenomenological failure criteria [9, 10] was implemented in a FE code to
perform “hot-spot” ply failure analysis and identify the critical locations for damage onset
and the corresponding ply failure modes. The “hot-spot” identification analysis resulted
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Figure 12: Mesh and boundary conditions for the simulation of off-axis specimens under
tension and compression.
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Figure 13: Overall correlation between experimental results and model predictions of off-
axis coupons subjected to axial loading.

satisfactorily accurate for the prediction of critical locations for intra-laminar failure onset
at the coupon and structural level, confirming the critical failure modes and the locations
prone to damage onset observed in experiments.

To address failure at the laminate level, an extension of omni strain failure enveloped to
triaxial stress states is proposed. Using as baseline criteria the 3D invariant-based failure
criteria [9, 10], omni strain envelopes that predict laminate failure under general 3D stress
states were generated. This concept allows simple generalization of ply-based criteria
to laminate-based criteria, overcoming two important constraints in MDO of composite
aerostructures: (i) computing time, by establishing laminate failure criteria independently
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Mesh and boundary conditionsGlobal model
Local model

Figure 14: Uncoupled global and local models of a stringer runout subjected to tensile
loading.

of ply discretisation, and (ii) excessive conservatism, by incorporating safe LPF criteria
instead of over-conservative FPF criteria.

Finally, advanced meso-scale failure models for composite materials are implemented
to predict the inelastic deformation up to ultimate failure in detailed models. The 3D
invariant-based criteria [9, 10] were coupled with a meso-scale damage model that accounts
for the kinematics of matrix cracking and kink band formation during damage propagation
[22]. This model accounts for the effect of complex 3D stress states in the prediction
of both onset and broadening of longitudinal and transverse failure mechanisms. The
bolted connection of a stringer runout analysed for “hot-spot” identification was simulated
using the proposed modelling strategy combining the smeared crack model and cohesive
elements, showing that delamination governs the failure scenario. Furthermore, the effect
of the applied bolt pre-load was studied, leading to a minor effect on the mechanical
response of the bolted connection, as observed experimentally.
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Figure 15: Stress-displacement curves, obtained applying different levels of pre-loading,
for the bolted connection under tension. The pictures of damage evolution show, from
left to right, the intra-laminar fibre, matrix and inter-laminar damage for the case of 1 kN
pre-loading at points A and B in the stress-displacement plot.
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Abstract In this presentation, the development of an OpenFOAM based CFD-CSD solver
and its application for Uncertainty Quantification (UQ) of flutter predictions is described.
In particular, a coupled compressible solver based on the construction of convective and
viscous flux Jacobians is developed, and the Lower-Upper Symmetric Gauss-Seidel
algorithm is implemented to solve the resultant matrix. This aerodynamic solver is then
coupled with a six DoF structural dynamics solver to form an aeroelastic analysis tool.
The simulation results obtained from this aeroelastic tool are then employed to construct
a surrogate model using the Gaussian Process (GP) approach. Combined with an error-
informed and efficient sampling strategy, the developed UQ framework is applied on the
benchmark problem of Isogai 2D NACA 64A010 airfoil. It is shown that the developed
framework is more efficient and much faster than the conventional approach in detecting
the flutter boundary while providing a probabilistic error estimate of the results.   .

Keywords: Uncertainty Quantification, Gaussian Process, coupled compressible solver, flux
Jacobian, Lower-Upper Symmetric Gauss-Seidel
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Abstract Helicopter aircrew are exposed to high levels of Whole-Body Vibration (WBV) in 

fight operations, which may degrade their ride comfort and performance in the short-term, 

and contribute to adverse health issues in the long-term. The patented active seat mount 

technology presented in this paper was developed to reduce the whole-body vibration of the 

helicopter aircrew through active cancellation of the N/rev vibration peaks related to the 

helicopter main rotor speed. The latest development of the active seat mount technology 

included structural redesign for integration into the helicopter cabin and extensive control 

law tuning tests conducted on a shaker table with human subjects in order to verify and 

validate the performance, reliability and safety of system prior to flight tests. The shaker 

test results demonstrated that the redesigned active seat mount achieved significant 

reduction of the occupant WBV levels at the bottom seat cushion interface per ISO2631-1 

metrics and also reduced the occupant head vibrations simultaneously. The promising 

results demonstrate that the active seat mount is capable of improving the ride quality of 

the Bell-412 helicopter in representative flight conditions and mitigating adverse long-term 

health issues of the helicopter pilots. 

Keywords: helicopter vibration, active seat mount, aircrew whole-body vibration, adaptive 

vibration control, shaker testing, Bell-412 helicopter 
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1. INTRODUCTION 

Although the helicopter is a versatile aerial platform for military and civilian applications, its 

ride quality is generally poor mainly due to the harsh vibration and noise environment within 

the cabin. The helicopter fuselage vibration is excited by the rotor aerodynamics and inertial 

loads at N/rev frequencies of the main rotor speed, where N is the number of main rotor blades 

[1]. During flight, helicopter floor vibration is transmitted from the seat frame through the seat 

cushions to the seated aircrew, exposing aircrew to an environment known as Whole-Body 

Vibration (WBV). Exposure to high levels of WBV adversely affects ride comfort, leading to 

reduced operational performance. Long term exposure to high WBV levels contributes to health 

issues such as lower back pain and neck strain in the helicopter aircrew community, which in 

turn can result in the aircrew losing their flight status [2, 3]. 

Most helicopters are designed to operate at relatively low main rotor speeds due to aerodynamic 

considerations, resulting in a fundamental excitation frequency which is typically close to 5 Hz. 

Furthermore, the ISO 2631-1 standard indicates that the human body responds significantly to 

vibration within the low frequency range, dominantly between 0.5 Hz and 80 Hz [4]. In 

particular, the frequency range between 0.5 and 12 Hz is the most sensitive regime in the human 

spine direction that introduces significant vibrational effect on the human body. Therefore, the 

ISO 2631-1 standard requires the WBV of a seated human to be measured at the seat cushion 

interface. Moreover, this standard also provides detailed technical guidance on the 

methodologies for WBV measurement and assessment. Note that since the dominant N/rev 

peaks of the helicopter vibration are typically below 25 Hz, it is very important to control the 

amplitudes of these peaks in order to effectively reduce the WBV exposure of the helicopter 

aircrew during flight operations. 

To provide effective WBV mitigation to the helicopter aircrew, especially for the critical low 

N/rev frequencies, active control designs for adaptive vibration cancellation have been explored 

by the National Research Council (NRC) Canada during the past two decades. The active 

mitigation of helicopter aircrew WBV was explored by Chen et al. [5, 6] using two parallel 

stacked piezo-stack actuators on a Bell-412 helicopter pilot seat. Under representative Bell-412 

vibration profiles, the active seat was able to provide effective vibration reduction at major 

N/rev peaks except at the 1/rev frequency of 5.4Hz. This was mainly due to the fact that the 

piezo-stack actuators cannot provide the stroke required for reducing the 1/rev vibration. 

Further development of the technology using miniature electro-magnetic actuators achieved 

simultaneous WBV reduction at major N/rev peaks including the 1/rev on the shaker table [7-

9]. These studies demonstrated that an active control solution is effective in mitigating WBV 

for helicopter aircrew.  This active seat mount concept for helicopter aircrew vibration control 

titled “compact vibration reducing human support” has been patented by NRC in a number of 

jurisdictions such the US (patent no: 10774898B2), UK (patent no: 2559035), Germany (patent 

no: 102017128067) and Canada (patent application no: 2950508). 

Inspired by these technical advances and patenting successes, NRC further improved the active 

seat mount technology to meet stringent airworthiness requirements for integration into the 

NRC Bell-412 helicopter. Extensive shaker testing with human subjects using a Bell-412 non-

armoured pilot seat on a human-rated shaker table were performed. This paper presents the 

details of the design of the flightworthy active seat mount system integrated into the NRC Bell-

412 helicopter. The results from the human-rated shaker tests are also discussed. 

Comprehensive shaker test results have convincingly demonstrated that the patented active seat 

mount technology is able to significantly reduce the WBV levels experienced by helicopter 

pilots seated on the Bell-412 non-armoured pilot seat in representative flight conditions to 

enhance the ride quality of the Bell-412 helicopter.  Furthermore, this technology also has the 
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potential to reduce adverse long-term health issues hitherto experienced by the aircrew. 

2. PROTOTYPE DESIGN OF THE ACTIVE SEAT MOUNT SYSTEM 

During initial studies, the proof-of-concept multi-axis active seat mount system was designed 

to retrofit the Bell-412 helicopter non-armored pilot seat. Since the Bell-412 pilot seat has two 

short horizontal supports that slide in to the floor rails of the helicopter cockpit, the prototype 

seat mount design introduced two identical active seat mount assemblies. The active seat mount 

assemblies were designed for installation between the Bell-412 pilot seat frame and the 

helicopter floor rails. This active seat mount system integration arrangement was expected to 

minimize the impact on the crashworthiness certification of the Bell-412 pilot seat, and to 

facilitate integration with other existing helicopter seat designs [10, 11]. One of the early 

prototype assemblies is shown in Figure 1a, while the installation of a Bell-412 non-armoured 

pilot seat on the prototype active seat system is shown in Figure 1b. 

 

a. active seat mount assembly  b. active seat mount and Bell-412 pilot seat 

Figure 1: prototype multi-axis active seat mount 

The prototype active seat mount assembly was designed with two parallel load-carrying paths. 

The upper frame of the active seat mount assembly was attached to the seat mount base frame 

through two structural elements, and the base frame was fastened directly to the seat rails on 

the helicopter floor:(1) the upper frame structure was attached to the seat mount base frame 

through a soft elastomer support which provided the baseline damping and stiffness for passive 

support of the pilot seat;(2) two miniature actuators were connected between the upper frame 

and the seat mount base to provide vertical vibration control capability in parallel. Similar 

arrangements were designed in the X and Y directions.  Therefore, the active seat mount system 

has the potential to suppress the whole-body vibration exposure in helicopter aircrew in all 3 

orthogonal directions to enhance their ride experience and improve their health protection in all 

helicopter flight conditions [12]. 

3. DESIGN IMPROVEMENTS OF ACTIVE SEAT MOUNT 

In order to integrate the active seat mount system in an operational helicopter cabin, it was 

necessary to further improve the design and performance of the system.  To achieve this 

objective, the two active seat mount assemblies were designed specifically to fit the Bell-412 

helicopter cabin, while meeting stringent airworthiness requirements and maintaining full 

functionality. It is important to note that the modifications focused mainly on the installation of 

the active seat mount assemblies to fit within the NRC Bell-412 helicopter rear cabin for flight 

demonstration purposes, and it is reasonable to expect that additional structural modifications 

and further optimizations are required before the technology is ready for commercial product 
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development. 

Since the Bell-412 helicopter pilot seat was already designed and certified to meet 

crashworthiness requirements, the active seat mount design had to be critically reviewed to 

maintain this status. Through consultation with airworthiness engineers, it was determined that 

active seat mount structure had to be evaluated as part of the airframe of the NRC Bell-412 

helicopter and therefore all designs and changes were required to meet applicable FAA strength 

criteria for helicopter airframe structures. However, the installation of the Bell-412 non-

armored pilot seat on top of the active seat mount system neither alters the airworthiness nor 

the crashworthiness status of the seat structure since there is no change to the its design or 

usage. 

The first structural requirement was to reduce the weight and dimension of the prototype active 

seat mount in order to fit into the limited space of the Bell-412 helicopter cabin. The candidate 

installation locations were the cockpit or the rear cabin. Specifically, the height of the prototype 

active seat mount needed to be reduced in order to accommodate suitable head clearance of 

seated human occupants or anthropomorphic test devices (ATD). The prototype design utilized 

two actuators for vertical vibration control, which were positioned in the middle of the active 

seat mount assembly resulting in a significantly increase of the height of the active seat mount 

frame. Moreover, based on experimental results of the prototype design, the rated actuator force 

capacity in the vertical direction was required to allow for sufficient control authority of the 

high vibration levels experienced by the helicopter at high-speed flight and ground run 

conditions. In the redesign of the active seat mount, two larger and more powerful voice coil 

type actuators [13] were relocated at the two ends of the active seat mount assembly to allow 

for the centre top frame of the mount assembly to be lowered significantly in height.  These 

structural modifications reduced the height of the active seat mount assembly by 127 mm (5”) 

at the seat rail sections, which provided the required vertical space for the Bell-412 non-armored 

pilot seat frame and occupant wearing a flight helmet to be fitted into the NRC Bell-412 rear 

cabin with adequate head clearance. 

The second structural requirement was centred on the fact that the prototype active seat mount 

assembly was made of segmented aluminum bars for proof-of-concept demonstration purposes 

in order to reduce fabrication cost and lead time. Unfortunately, this design was not able to meet 

airworthiness requirements for aircraft flight testing. Therefore, the aluminum bar frames were 

replaced with 2024-T3 aluminum sheet metal structural components. The high strength sheet 

metal structural design was shown to achieve greater strength and stiffness while reducing 

weight by 16 lbs. 

       
a. seat mount assembly  b. vertical tunable isolator  c. rubber mounts 

Figure 2: redesigned active seat mount assembly 

To avoid excessive displacement of the Bell-412 pilot seat and occupant during aircraft flight 

maneuvers, the stiffness of the prototype active seat mount was redesigned in all three 

orthogonal directions. Two tunable stiffness vibration isolators were included to replace the 
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original soft elastomeric supporting elements in the vertical direction. These tunable isolators 

not only provided the required passive stiffness and damping for support in the vertical 

direction, but also offset the compressive displacement due to the static weight of the Bell-412 

pilot seat and occupant. Additionally, the soft elastomeric supporting elements in the X and Y 

directions were also replaced with multiplane rubber mounts. These off-the-shelf rubber mounts 

were expected to provide predictable and reliable vibration isolation to limit the displacement 

in all three directions. The active seat mount assembly and the new isolators are schematically 

shown in Figure 2. 

These structural modifications reduced the system’s height and weight significantly, with the 

weight of each assembly reduced from 124 lbs to 51 lbs. The improved active seat mount 

became sufficiently compact and was able to fit into the NRC Bell-412 helicopter rear cabin 

for flight testing purposes. The active seat mount system installed with the Bell-412 non-

armoured pilot seat frame within the NRC Bell-412 rear cabin, and on the shaker table are 

shown in Figure 3 a and Figure b, respectively. 

                            
a. active seat mount assembly  b. active seat mount tested on shaker table 

Figure 3: active seat mount and Bell-412 pilot seat installations 

The airworthiness authority of the NRC Flight Research Laboratory performed an independent 

review of the improved active seat mount structure, and confirmed that the crashworthiness 

compliance status of Bell-412 seat frame was not altered by installing it on top of the new active 

seat mount system. The design of active seat mount structure was shown to satisfy applicable 

airworthiness requirements regarding the integrity of Bell-412 airframe through finite element 

analysis. In addition, the control computer and other electronic equipment were powered and 

tested using the NRC Bell-412 helicopter project power supply, and shown to satisfy applicable 

safety and functionality requirements for flight testing. Therefore, the improved active seat 

mount was approved for installation on the NRC Bell-412 helicopter test platform for 

experimental flight test and demonstration purposes. 

4. ADAPTIVE CONTROL ALTGORITHM DEVELOPMENT  

Helicopter flight tests show that the aircrew vibration spectra are dominated by N/rev harmonics 

of rotor dynamic load [12].  In particular, the measured aircrew body vibration was dominated 

by the 1/rev and 4/rev harmonic peaks while the contribution from the 2/rev and 6/rev 

harmonics was minor.  Therefore, the control force generated by the actuators of the active seat 

mount was primarily required to counteract the forced vibration loads at N/rev harmonics in 

order to provide effective vibration suppression for the aircrew body.  Secondarily, critical 

resonant modes of the seated aircrew that are being excited due to random vibration and these 

vibration modes were required to be suppressed as well.  With an effectively designed adaptive 
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control algorithm, the active seat mount system was able to provide vibration suppression of 

the N/rev harmonics as well as control of the resonant structural modes to significantly reduce 

the vibration transmitted to helicopter aircrew. 

The performance objective of the control algorithm developed for this investigation was to 

reduce the aircrew vibration measured on the seat cushion interface and monitor the reduction 

in vibration response at the helmet.  In particular, the accelerometer that measured the seat 

cushion vibration in the vertical direction was selected as the error sensor, e(k), while 

accelerometers at the helmet in the vertical direction was monitored for overall system 

performance evaluation.  The actuators in each X, Y, Z directions were electrically configured 

in parallel to operate with a single control input channel.  This configuration enabled the 

implementation of a Single-Input-Single-Output (SISO) control system to control the active 

helicopter seat mount system in a single direction [14]. 

4.1 Adaptive Notch Concept to Control Harmonics 

There are several control approaches that have been used in the past to suppress harmonic 

disturbances with varying degrees of success.  Among the control strategies to eliminate 

harmonic disturbances, Morgan and Stanford developed a promising controller design approach 

that introduced “notches” at synchronous frequencies [15] to control harmonics.  For narrow-

band applications, a reliable sinusoidal reference signal is used to configure the Least Mean 

Square (LMS) as an adaptive notch filter by removing the primary spectral components within 

a narrow band centered about the reference frequency.  Chen et al have shown previously that 

an adaptive notch controller implemented with a Filtered-x Least Mean Square (FLMS) 

algorithm with a suitable reference signal was able to cancel the helicopter rotor vibration [16].  

This previously published principle of a FLMS algorithm formulation shown in Figure 4 was 

used for the current investigation [17].  It is important to note that discrete time implementation 

of the controller and plant model was used for the controller development. 

 

 
Figure 4: Adaptive notch controller diagram 

 

Here, the disturbance d(k) represents the external excitation forces such as the N/rev harmonics 

and random excitation of the aircrew.  The error signal e(k) is the acceleration at the aircrew 

helmet location used to satisfy the objective of the controller.  The reference signal, control 

input and control output are denoted by x(k), u(k) and y(k), respectively.  Since the disturbance 

frequency  𝜔𝑖 is usually unknown to designers, an estimate of the frequency, �̂�𝑖, is necessary.  

Thereafter, the reference signal is synthesized as a combination of sinusoids at the estimated 

frequencies as following: 
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where i = 1….o while the o is the number of frequencies to be included in the reference signal.  

The reference signal is filtered with magnitude and delay through the control path.  Assuming 

the transfer function of the control path, estimated as �̂�(𝑧),  generates the weights of the FIR 

filter for the control path transfer function h(k), the filtered signal can be expressed as: 

 

 x(k)*)k(h(k)x̂ =  (2) 

 

The filtered signal �̂�(𝑘) is then adapted by the LMS algorithm as discussed previously in the 

published references [18].  W(z) provides the controller coefficients of the iterative weights 

w(k) in order to generate the adapted control input u(k) using the reference signal x(k) as shown 

below; 
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The control output signal y(k) denoted in the discrete domain as Y(z) is generated by the FLMS 

algorithm and expressed as follows: 
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where, E(z) is the error signal in the discrete domain.  Assuming that no error in the frequency 

estimate is present and the control path is Linear Time Invariant (LTI), the first term in the 

control signal is time-invariant, which produces notches at the estimated frequencies, while 

terms 2 and 3 are time-varying.  However, if the length of the FIR filter, n, is comparatively 

long and the convergence coefficient, 𝜇, is relatively small, the time-varying components will 

be small and can be neglected.  As a result, an equivalent filter with a notch at frequency �̂�𝑖  

will be obtained.  The equivalent closed-loop transfer function C(z) between the harmonic 

reference signal and the error signal has the form of a classical bandpass filter, with notches at 

the reference frequencies, and can be expressed as: 
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If the disturbance frequency varies slowly with time, it is necessary to identify the variation in 
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frequency in real time to update the reference signal for the FLMS controller, such that a tunable 

notch filter can be formed adaptively.   

However, due to the nature of identification, a frequency estimate error between �̂�𝑖 and 𝜔𝑖 is 

inevitable.  As a result, the modulation between the error signal e(k) and the filtered reference 

signal �̂�(𝑘) will lead to an oscillation in the weights of the FLMS algorithm.  If the estimate 

error is small so that the 𝜔𝑖 − �̂�𝑖 component in the controller weight is stronger than 𝜔𝑖 + �̂�𝑖, 

the notch filter effect would also be present.  Therefore, an efficient and accurate frequency 

estimation method is essential for the algorithm to track the shift in the disturbance frequencies. 

 
 

Figure 5: On-line identification of control path 

4.2 Control Path Identification Method 

As mentioned previously, the aircrew vibration frequency varies with the flight conditions, 

aircrew weight, posture and many other factors.  Therefore, the transfer function of the control 

path, H(z), is time-varying and therefore needs to be estimated on-line.  The block diagram of 

a SISO adaptive feed-forward control law in Figure 5 shows the identification process for the 

control path, represented by the transfer function between the stacked piezoelectric actuators 

and the accelerometer at the helmet location.  By introducing white noise, 𝑣(𝑘), into the control 

input as the identification excitation, the contribution of this excitation b(k) is measured by the 

error sensor such that 

   

 v(k)* h(k)b(k) =  (6) 

 

If the white noise and control signal are not correlated, an estimate of the control path �̂�(𝑧)  

can be obtained using the LMS algorithm.  Assuming �̂�(𝑧) is represented by a FIR filter, the 

weights 𝑤ℎ(𝑘) can be obtained through iteration as follows: 

 

 )]k(b̂)k(u*)k(h)k(d)k(b)[(k(v)k(W)1k(W hhh −−++=+  (7) 

 

By defining 

 v(k)* (k)ĥ(k)b̂ =  
(8)  

 )k(x)k(w)k(h)k(d)k(u)k(h)k(d)k(o −=−=  (9)  
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the adaptive law governing the weights of the control path is expressed as follows: 

 

 )]k(b̂)k(o)k(b)[(k(v)k(W)1k(W hhh −++=+  (10) 

 

Compared to the off-line system identification method, it can be shown that o(k) represents a 

signal from the feed-forward controller.  This parameter interferes with the control path 

identification process, which may slow down the convergence speed and even lead to a 

divergence of the process [19]. 

A compensation applied to o(k) as shown in Figure 6 is able to improve the efficiency in the 

control path identification process.  Because o(k) is a narrow band signal that consists of 

multiple harmonic frequencies, it can be cancelled by introducing another adaptive filter, G(z), 

which has multiple notches at the corresponding frequencies in order to eliminate the 

interference in control path identification.  

 
Figure 6: Compensator for control path identification 

 

The filter G(z) can be designed for frequency �̂�𝑖 as seen from Figure 7, only two weights are 

needed to cancel one frequency, which can be expressed as 
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where ee(k) is error signal of the adaptive notch filter, 𝜇1 is the convergence coefficient of 

the compensator and c is the amplitude of the synthesized reference signal.   The equivalent 

transfer function of the compensator filter is as follows: 
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As long as a reliable reference signal that includes controllable sinusoidal interference is 

available, the adaptive notch filter automatically creates a notch over each sinusoid and tracks 

its frequency drift.  Therefore, this adaptive notch filter provides a simple and effective 

alternative to other methods of tracking and eliminating N/rev harmonics in the helicopter seat 

vibration control application. 

 

 
Figure 7: Adaptive notch filter 

4.3 Reference Signal Synthesis Method 

A reliable reference signal is very important for the successful application of the FLMS 

algorithm for vibration control because it guarantees that the controller is stable in the closed-

loop system.  Among a number of possible approaches, the signal synthesis method based on 

digital signal processing techniques was selected because it avoided introduction of feedback 

loops in the control path.  This reference signal synthesis approach guarantees that the controller 

is purely feed-forward and stable, and also assumes that the variation of disturbance frequency 

is slow, which is appropriate for helicopter vibration control applications. 

An accurate and efficient estimate of the disturbance frequency is necessary to achieve reliable 

cancellation of harmonic vibrations transmitted to the aircrew through the seat.  There are two 

approaches, namely, non-parametric and parametric, that were used to estimate the frequency 

content of a signal based on a finite set of data observations.  The non-parametric methods are 

based on the Fast Fourier Transform (FFT) technique.  Since the accuracy of this method 

depends on the length of the data series, comparatively long data series are required to obtain 

an accurate estimate.  Therefore, this type of FFT based frequency estimation method is not 

suitable for real-time applications.  The high computational burden of FFT analysis is another 

challenge for real-time controller implementation.  An alternative approach is to use a 

parametric method that is based on digital signal processing techniques.  Although it is 

relatively fast, this approach provides high resolution frequency estimates despite short data 

series, making it an attractive approach for the present adaptive control algorithm.  The 

parametric method uses a predetermined model to estimate the frequency components of the 

signal.  A covariance autoregressive (AR) method is adopted in the present investigation.  The 

AR model can be expressed as: 
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where, 𝑞, 𝐾 and 𝑎𝑖 are model order, scalar gain and coefficients, respectively.  Due to the fact 

that the poles of the AR model correspond to the estimated frequencies, the frequencies can be 

calculated from the AR polynomial once an estimate of the AR model coefficients is obtained.  

Therefore, a reference signal for the adaptive algorithm could be synthesized as a linear 

combination of multiple sinusoids as shown in Eq. (1). 

An effective adaptive controller to counteract helicopter rotor harmonics was successfully 

developed with such a synthesized reference signal.  Since the harmonic frequencies in aircrew 

excitation are estimated on-line and selectively included in the reference signal, the algorithm 

does not only suppress vibration modes selectively, but also tracks the change in the vibration 

spectra.  In this investigation, the floor vibration that excites the seat frame was measured 

directly by an accelerometer and used as the reference signal in the adaptive feed-forward 

control law.  This approach guaranteed that the FLMS control system was stable in the closed-

loop system. 

4. AIRCREW WBV MITIGATION ON THE SHAKER TABLE 

Prior to flight testing on the NRC Bell-412 helicopter, validation testing of the improved active 

seat mount system was performed on a human-rated shaker table using human occupants. Bell-

412 floor vibration profiles measured during actual flights were used as the shaker vibration 

profiles in the laboratory, with the approval of NRC Research Ethics Board since testing was 

being performed using human subjects. 

The human-rated shaker table was designed to provide simulated vibration excitations in the 

vertical direction only. The improved active seat mount was fastened to a baseplate matching 

the Bell-412 floor interface pattern, and then installed on the shaker table. A Bell-412 non-

armored pilot seat was mounted on the upper frames of the active seat mount assembly through 

two Bell-412 floor rails. A 178 cm tall male volunteer weighing 180 lbs was seated on the Bell-

412 pilot seat as the occupant, and secured using a four-point pilot seat harness. This human 

subject closely represented a 50th percentile male per US anthropometric data. The shaker test 

configuration is shown in Figure 3b. 

The shaker table provided a statistically stationary vibration input to excite the active seat mount 

assemblies vertically. The simulated vibration profile, which was derived from Bell-412 floor 

vibration measurements, included eight N/rev harmonic peaks each scaled to match with the 

Bell-412 floor vibration spectrum at 120 kts. In addition, a low-level random vibration between 

3 and 50 Hz was superimposed to simulate broadband aerodynamic excitations. 

Closed-loop tests have been performed to reduce the whole-body vibrations per metrics 

suggested in ISO 2631-1 standard. First, the WBV responses of the human subject on the Bell-

412 seat were recorded and used as the baseline parameters. Next, the FLMS adaptive controller 

was activated to control the active seat mount assembly in the vertical direction to reduce the 

WBV of the occupant. The vibration responses of the occupant and active seat mount system 

were monitored and recorded throughout the experiment. When the controller converged, the 

WBV levels of the occupant were compared with the baseline parameters to evaluate the WBV 

mitigation performance. 

4.1 WBV Vibration at Seat Cushion Interface 

The vibrations measured at the interfaces between the seat cushions and the human body were 

frequency weighted using the Wk factor defined in ISO 2631-1:1997 and then used as the metric 

to determine the occupant WBV exposure levels. Test result of the 50th percentile male subject 

measured as a time history of the Wk-weighted WBV at the bottom seat cushion interface is 

shown in Figure 8. The entire duration of the test was 480 seconds, which followed the below 
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sequence: 1. during the first 30 seconds, the occupant experienced the vertical WBV level 

without control; 2. the actuator was then powered by the FLMS controller starting from 30s and 

adaptation of the controller terminated at 330s; 3. next, the converged adaptive controller 

stopped the adaptation but maintained control between 330s and 380s; 4. the control voltage 

was then stopped between 380s and 420s; 5. the control voltage was activated again at 420s and 

stopped at 470s; 6. finally, the controller was disconnected at 480s. 

When the active seat mount was not activated, it was clearly shown that the human occupant 

was subjected to relatively high WBV levels, and the time history also showed unsymmetric 

vibration which may be related to the periodical N/rev harmonic excitations from the shaker 

table. Based on ISO 2631-1, the ISO Wk-weighted rms level of the vertical vibration was 0.786 

m/s2, and the ride comfort level was qualitatively rated as “Fairly Uncomfortable”. Based on 

the health guidance in ISO 2631-1, the permitted daily exposure time was 1.6 hrs. 

Despite running at a relatively conservative convergence rate, the FLMS controller was able 

to quickly reduce the WBV vibration and converged within 20 seconds by adaptively 

suppressing the dominant N/rev peaks, which resulted in significant reduction of the Wk-

weighted WBV vibration. By evaluating the response between 330 and 380th seconds, the Wk-

weighted rms WBV level decreased to 0.43 m/s2, and the ride comfort level was qualitatively 

rated as “A Little Uncomfortable”. Per ISO standard, the WBV level was reduced by 45.2%, 

extending the daily permitted exposure time to 18.4 hrs, which effectively eliminated the daily 

exposure time limit for this simulated flight condition. 

 
Figure 8: Time trace of the vertical vibration level at the occupant and seat cushion interface 

 

Spectral analysis of the ISO-weighted WBV for the “No Control” and “Controlled” segments 

is shown in Figure 9. It was clearly shown that the dominant WBV peaks including 1/rev, 2/rev 

and 4/rev were effectively suppressed by the active seat mount. In particular, the amplitudes of 

the 1, 2 and 4/rev peaks were reduced by 68.7%, 96.5% and 98.9%, respectively. There was no 

significant control spillover within the frequency range below 80 Hz, indicating that the FLMS 

controller was effective and robust in the control of the active seat mount on the human-rated 

shaker table. 
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Figure 8: spectral plot of Wk weighted vertical vibration level at the occupant and seat cushion interface 

4.2 Aircrew Head Vibration Evaluation 

Besides the WBV levels, the vibration levels of the occupant head were also evaluated. The 

head vibrations were measured by a tri-axial accelerometer bonded to the top of the HGU-56P 

helicopter flight helmet worn by the occupant. Spectral analysis of the occupant’s head 

vibration is shown in Figure 9. 

The plots indicated that human biodynamics was critical in the transmission of vibration from 

the seat cushion interfaces to the occupant head. Different from the vibration at the bottom seat 

cushion interface in Figure 4b, which was dominated by multiple N/rev peaks, it was clearly 

shown that the occupant head vibration was dominated by a single 1/rev peak in both fore/aft 

and vertical directions. Evident in ISO 2631-1 for the Wk-weighting factor, the human spine 

biodynamics introduces significant amplification between 5 and 8 Hz. Coupled with the 1/rev 

frequency of the Bell-412 main rotor speed at 5.4 Hz, the occupant head vibration showed a 

distinctively high peak at the 1/rev frequency. Compared to the fore/aft direction, the vertical 

vibration level was higher although both were characterized by a dominant 1/rev peak. The 

overall rms vibration was 0.33 in the fore/aft direction and 0.47 m/s2 in the vertical direction. 

Since only vertical excitation is provided on the shaker table, the head vibration results 

indicated that significant human biodynamic coupling existed in the head fore/aft and vertical 

directions. 

 
a. fore/aft vibration    b. vertical vibration 

Figure 9: occupant head vibration on the shaker table 
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With the adaptive control of the active seat mount in the vertical direction, not only were WBV 

vibration levels at the bottom seat cushion interface reduced, but the occupant head vibration 

levels were also reduced simultaneously. As shown in Figure 9b, the amplitude of 1/rev peak 

was reduced by 85.9% for fore/aft and 75.9% for vertical direction. As a result, the overall rms 

vibration level was reduced by 27.6% in the fore/aft and 35.9% in the vertical direction, 

respectively. 

The shaker test results clearly demonstrated that the active helicopter seat mount system was 

able to reduce the occupant WBV at the bottom seat cushion interface to improve the ride 

quality, and also reduced the head vibrations simultaneously. The enhanced ride comfort and 

head/helmet stabilization would improve the aircrew performance by reducing their neck 

muscle fatigue, increasing visual clarity of the instrument panel and enhancing situational 

awareness in flight operations. 

5. CONCLUSIONS 

The redesign and flight testing of the NRC-patented active seat mount technology to reduce 

aircrew whole-body vibration levels on the NRC Bell-412 helicopter is presented. The flight 

worthy active seat mount system was integrated with a Bell-412 non-armored pilot seat. The 

WBV mitigation performance was evaluated using human subjects through extensive tests 

performed on a human-rated shaker table.  

Through adaptive suppression of multiple major N/rev vibration peaks at the bottom seat 

cushion interface, the NRC-patented active seat mount system was successful in reducing the 

occupant WBV as well as head vibrations simultaneously in accordance with ISO 2631-1 

metrics. The active seat mount performed reliably and consistently for all of the human subjects 

in all vibration levels corresponding to flight conditions. The extensive shaker test results 

convincingly demonstrated that the active seat mount technology was able to significantly 

enhance the ride quality of helicopter pilot seats, mitigate adverse WBV effects on the pilot and 

improve their operational performance in realistic flight conditions.  
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Abstract The contribution describes three innovative external airbag systems developed by the 

authors for the protection of flying objects during emergency landings. The first one is the 

AdBag system  dedicated for small drones, which is designed to protect the carried equipment 

and prevent damages to objects or injuries to people at the crash location. The second system 

is external airbag designed for ultralight aircraft Skyleader 600, which provides significant 

reduction of touchdown velocity and deceleration levels during emergency landings, thereby 

improving protection of the pilot and the passengers. Finally, the last presented solution is the 

Spring-Drop system with specialized airbag deployment technique, which is dedicated for 

specialised airdrop operations where the touchdown conditions can be extremely harsh and 

unexpected, while protection of transported cargo is of crucial importance. Both conceptual 

studies, numerical simulations and experimental tests of the three proposed systems are 

presented and  discussed.  

Keywords: External airbags, adaptive system, emergency landing, human safety 
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1. INTRODUCTION 

Most of the flying objects of general aviation such as drones and small aircrafts are 

endangered of emergency situations caused by equipment failure or human error, which result 

in the requirement of emergency landing. Although such flying objects are typically equipped 

with parachute rescue systems, they usually do not provide sufficient protection of human or 

carried cargo in the case of emergency situations occurring at relatively low altitudes. The 

possible solution of this problem is application of external adaptive airbags located below the 

flying object, which are deployed and inflated when the situation of emergency landing is 

detected. During touchdown, the activation and adjustment of special vents provides proper 

release of gas from the airbag, resulting in efficient impact mitigation and improved level of 

protection of the landing object. 

The design of adaptive airbags is associated with multiple theoretical and practical 

challenges. In general, the concept of adaptive airbags follows a more general concept of 

Adaptive Impact Absorption, in which the system is adapted in semi-active way to actual 

dynamic loading with the use of structural fuses based on smart materials [1, 2, 3]. In a specific 

case of adaptive airbags, the first problem is precise identification of the landing conditions, 

including mass, velocity components and spatial orientation of the object [4]. The second 

challenge is the requirement of fast deployment and inflation of the airbag in the short period 

of time between detection of failure and emergency landing [5]. Finally, the third problem is 

providing appropriate large release of the gas from the airbag during the short period of landing 

[6, 7]. Due to the requirement of large gas flow rates and process robustness, neither the typical 

electromechanical valves nor piezoelectric valves [8, 9, 10], which are successfully used in 

adaptive shock absorbers, can be applied. Instead, the attention is focused on standard passive 

vents, dedicated membrane valves [11] or semi-passive solutions [12, 13, 14]. All the above 

factors cause that design and construction of adaptive external airbags for emergency landing 

still remains challenging engineering problem.  

The following part of the paper presents three different airbag systems  the protection of 

flying objects during emergency landings developed during several years of cooperation 

between Institute of Fundamental Technological Research of the Polish Academy of Sciences, 

Adaptronica Company and Warsaw University of Technology. The Section 2 describes AdBag 

system dedicated for small drones, which  protects the carried equipment and prevents damages 

at the crash location. The Section 3 presents external airbag designed for ultralight aircraft 

Skyleader 600, which provides significant reduction of deceleration during emergency 

landings. In turn, the Section 3 highlights recently developed Spring-Drop system based on 

specialized airbag deployment technique, which seems promising in extremely harsh landing 

conditions. Eventually, in the last section summarizes the achievements and draws basic 

conclusions regarding the proposed systems of adaptive external airbags.  

2. ADBAG – ADAPTIVE AIRBAG FOR SMALL UAV  

Small drones with a total mass of several kilograms are becoming increasingly popular 

in various applications, including aerial surveillance, airborne observation and laser scanning. 

The popularity of such applications increases the likelihood of the occurrence of emergency 

situations. Given that drones often operate over densely populated urban areas, it is necessary 

to ensure protection of individuals or objects on the ground, and to minimize the transmitted 

shock loads to the fragile electronic equipment on the drone, such as cameras, lenses, and lidars. 

The developed adaptive emergency landing system is designed specifically for unmanned 

aerial vehicles (UAVs), but it can also be utilized for the protection of crewed aircraft and other 
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flying objects. The proposed device comprises an airbag with at least one pre-cut vent hole, an 

inflation module containing a fan drive, a gas release activation module, a fault detection 

module, and a ground proximity detection module. The device is also equipped with a 

pyrotechnic charge and an igniter located on the airbag envelope in the vicinity of the pre-cut 

vent hole. Additionally, the device incorporates mechanical stabilizers for spatial orientation of 

the object positioned above the airbag, which are designed for compact folding and rapid 

deployment. The operation of the device involves activating and inflating the airbag upon 

detection of an emergency situation, pyrotechnic activation of the vent holes, and executing the 

landing process through controlled gas release. The proposed device ensures a stable landing 

of the UAV in the appropriate spatial orientation, adapts to impact conditions by activating a 

selected number of vent holes based on prediction of impact conditions, and effectively 

mitigates the impact forces during the landing process.  

The initial stage of the elaboration of the Ad-Bag system was development of a  dedicated 

airbag design method, which included application of simplified analytical models for 

approximate adjustment of system parameters as well as application of fully nonlinear dynamic 

FEM models (LS-Dyna explicit solver) for precise airbag shape design (Fig. 1). Moreover, a 

drop test stand with the maximal drop height of 20 m, composed of a vertical guiding system, 

remote release of suspended object, and a base plate with piezoelectric force transducers for 

measurement of total vertical loads was designed and constructed. The series of drop test 

conducted with the use target-shaped airbag (Fig. 2) allowed determine system dynamic 

response the required area of the valve for various mass and velocity of the landing object.  

 

Figure 1. Visualization of the numerical finite element simulation showing emergency landing of the drone 

equipped with external airbag on the standard city car (numerical simulation by Mr. Krzysztof Hinc, [15]).  

 

        

Figure 2. Complete AdBag system with a target-shaped airbag, prepared for drop tests 
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In the following stage of research the AdBag system has been integrated with the "Iron 

bird" for the free-fall testing purposes. The free-fall test were conducted in accordance to 

general guidelines of the project and has proved that the AdBag System demonstrator operates 

successfully during free-fall in field conditions. Selected frames captured by a high-speed 

camera during free-fall and landing are presented in Fig. 3a. Moreover, a quadcopter drone was 

equippped with the complete integrated AdBag system and prepared to be used in flight tests 

(Fig. 3b).  

Ultimately, the flight tests of the developed system were conducted. During the test, the 

drone has achieved the height of 14.3 m. The descent speed at the moment of impact with the 

ground was equal 8.9 m/s.  The vent holes were successfully ignited at the correct altitude. The 

drone impacted the ground at an angle of approximately 40 degrees, which was attributed to 

partial malfunction of one aerodynamic stabilizer. Nevertheless, the test demonstrated 

effectiveness of the AdBag system even in the case of a rotated  drone during descent. After the 

impact with the ground with the AdBag system, the drone did not lose its flight capabilities.
   

      

Figure 3. a) Free-fall tests of the complete AdBag system, b) drone equipped with the AdBag system and 

stabilizers constructed for flight testing purposes.  

      

Figure 4. Results of the conducted flight test: a) free fall of the drone (propellers off, airbag inflated),                 
b) start of the collision with the ground  
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Summarizing the conducted research, the AdBag System allows for the absorption of 

the total energy of a falling drone from an arbitrary height, with a minimum operational height 

of 4 m. Depending on the height at which the drone experiences a malfunction, one, two, or 

three vent holes are activated during collision with the ground, which provides efficient system 

adaptation. During both laboratory and flight tests, the AdBag System operated fully 

satisfactorily, provided absorption of the entire impact energy and efficient UAV protection. 

3. ADAPTIVE AIRBAG FOR SKYLEADER 600 AIRCRAFT 

An innovative adaptive external airbag to enhance the safety of ultralight aircraft (up to 

600kg) has been developed, manufactured, and thoroughly tested within the framework of the 

SOFTLAND project. The fabricated prototype airbag was aimed to fulfil the following 

fundamental requirements set by the aircraft manufacturer: 

• Possibility of using in conjunction with a parachute; 

• Reduction of vertical touchdown velocity from 7.5 m/s (descent with a parachute) to 

2.5 m/s; 

• Limitation of the deceleration to 5 g; 

• Minimal mass, up to a maximum of 15kg; 

• Deployment time below 13 seconds (approx. 100 m descent with the parachute); 

• No collision with the aircraft landing gear; 

• Compatibility with other currently utilized aircrafts. 

The capabilities of two different methods for inflating the emergency airbag were 

examined. In the first method, the inflation was achieved by utilizing high-performance fans, 

and  the entire airbag volume was filled with air from the atmosphere. A significant advantage 

of this approach was the ability to replenish gas losses, thereby eliminating the requirement for 

the airbag to be completely airtight and enabling its construction through sewing technology. 

In turn, the second tested inflation method relied on the use of cylinders with compressed gas. 

In such a case, due to the limitations of system mass, it was necessary to apply solution requiring 

minimal gas storage. Thus, the inflated airbag had to be as small as possible and completely 

airtight. As constructing an airtight pneumatic structure using sewing technology proved to be 

highly challenging, a design consisting of two layers of fabric was proposed: an internal layer 

to ensure air-tightness and an external sewn layer to provide mechanical strength. 

Moreover, various methods of the release of gas from the emergency landing airbag were 

analyzed: an active (electromagnetic) valve and a passive valve opened by gas pressure. To 

compare the effectiveness of both valves, the preliminary drops were performed on a model 

equipped with an electromagnetic valve, and compared to those obtained for a passive valve.  

The obtained results (braking force, braking distance, and maximal deceleration) appeared to 

be relatively similar and to fulfil the initial requirements. These allowed to resign from the use 

of  active valve, which was potentially prone to failures and required power supply, in favour  

of a passive valve.  

The proposed passive valve was automatically activated during the airbag compression 

process. The triggering factor was the change of internal pressure inside airbag, which caused 

change of airbag geometry and corresponding change of internal forces in the airbag envelope. 

The critical aspect of constructing a passive valve was determining the safe force level during 

initial airbag inflation, as well as the force level triggering the valve during the airbag 

compression phase.  

The developed large-scale drop testing stand (Fig. 5) allowed for dropping of the objects 

with the size and weight of the Skyleader 600 aircraft at the required velocity of 7.5 m/s. 
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The stand was equipped with systems for measurement of pressure inside the airbag as well as 

accelerations and displacements at selected locations of the aircraft. In particular, acceleration 

measurements were performed using accelerometers installed on the rigid components of the 

model aircraft. The drop tests were conducted using the Skyleader 600 model aircraft provided 

by the aircraft manufacturer, Zall Jihlavan Airplanes, and constructed according to the 

specifications of Adaptronica company. The applied model faithfully replicated the geometry 

and dimensions of the lower part of the Skyleader 600 aircraft. 

                                             

 

Figure 5. Drop tests conducted at the experimental stand 

The  total of 31 full-scale drop tests were conducted, including 21 tests with the model 

aircraft. The drop height was chosen to achieve a vertical velocity of 7.5 m/s at the moment of 

the contact of the emergency landing airbag's with the ground. During testing, the following 

various characteristics and parameters of the airbag were taken into account: 

• Airbag size (volumes ranging from 3-5 m3); 

• Airbag shape (cylindrical, rectangular, rosette-shaped); 

• Airbag inflation method (an electric fan, compressed air cylinder, hybrid solution 

combining both methods). 

The results obtained from the subsequent drop tests were used to verify the functioning 

of each analyzed design type of the SOFTLAND system. In particular, the change of object’s 

velocity and acceleration in terms of distance to the ground was presented in Fig. 6. It can be 

observed that after landing the object’s velocity drops below 1.5 m/s, which is lower than the 

required safety level equal to 2.5 m/s (Fig. 6a). Moreover, the deceleration of the landing object 

exceeds safety level of 5 g only during a very short period of the landing process (Fig. 6b). 

Finally, the obtained deceleration-displacement characteristics remains relatively flat during the 

entire process, which confirms high efficiency of the energy absorption.  
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Figure 6. Measurements recorded during the drop test: a. object velocity as a function of distance to the ground, 

 b. object acceleration as a function of distance to the ground 

 

In the subsequent phase of the project, the engineers involved in the development of the 

Softland system visited several times the Zall Jihlavan Airplanes factory in Czech Republic.  

During these visits, the system of adaptive airbag was installed on Skyleader airplane (Fig. 7a). 

The verification tests proved proper system operation, including fast deployment and inflation 

of the air airbag in industrial conditions (Fig. 7b). 

 

           

Figure 7.  The Softland system installed on the aircraft: a. airbag in the closed state, b. airbag in the open state 

The flight test was conducted at the Milovice Airport in the Czech Republic. The 

helicopter lifted the Skyleader aircraft equipped with the parachute and Softland system  to an 

altitude of approx. 400 meters (Fig. 8a). When the operator released the attachment, the 

parachute opened and Softland system was deployed correctly. Unfortunately, the ropes 

suspending the aircraft were improperly attached, resulting in a landing with a significant 

vertical rotation angle. As a result, the front part of the aircraft absorbed the energy from the 

initial impact. Nevertheless, the Softland system absorbed the impact energy in the second stage  

of the process, protecting the aircraft from further damage. 

From the perspective of evaluating the Softland system, the following aspects of the 

airbag's operation were positively verified: 

• Effective initiation of the safety system by deploying the parachute from the 

compartment located behind the cockpit; 

• Proper time instant of initiating the deployment of the airbag; 

• Proper time required for the airbag deployment under aerodynamic flow conditions 

(suitable for an aircraft descending with a parachute); 

• Correct shape of the airbag after deployment under aerodynamic resistance. 
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Figure 8. View of the aircraft equipped with the Softland system during a flight test 

The effectiveness of energy absorption during the aircraft's collision with the ground was 

very hard to assess due to the abnormal course of the final phase of the experiment. 

Nevertheless, the measured maximum acceleration of the aircraft structure was below 5 g, 

which perfectly fits within the initial requirements of the project.  

4. ADAPTIVE AIR-DROP SYSTEM 

New systems for specialized airdrop operations are continuously being developed and 

utilized in military, commercial and rescue applications. Each application entails specific 

requirements concerning system design and performance. Furthermore, landing conditions 

can vary significantly, necessitating the airdrop system to be adaptable to various impact 

scenarios. This section discusses the development of a novel, versatile airdrop system  that 

achieves high performance by an innovative construction and deployment mechanism. 

The proposed system ensures efficient impact mitigation during touchdown and enables 

effective safeguard of the transported cargo, particularly in scenarios in which the drop 

height remains relatively low.  

According to the proposed concept, the  capsule consists of a base with openings and 

cylindrical pneumatic chamber attached from its underside. The pneumatic chamber 

contains a stabilizing telescopic system, which maintains the shape of the pneumatic 

chamber. The telescopic system is equipped with a specially designed tensioning structure, 

which effectively supports system deployment but does not hamper its compression during 

landing and effectiveness of the impact absorption process. The detailed specific features 

of the system are currently being developed and patent claims are being prepared. 

 The objective of the preliminary tests is to assess the free fall speed of the device, 

which has a fixed mass of 2 kg and is equipped with a parachute. These tests aim to provide  

information regarding the time needed for object’s velocity to stabilize and the value of 

constant free-fall velocity. Such  information is required for computation of the amount of 

kinetic energy that has to be dissipated during touchdown.  

The research team conducted a total of 5 tests involving the dropping of the capsule 

from 3 different heights: 4m (1 attempt), 8m (1 attempt), and 25m (3 attempts). At each 

planned height, the suspended capsule was remotely released, and its movement was 

captured using a conventional mobile phone. The recordings were taken against the 

backdrop of the modular structure, serving as a reference mesh, on the facade of the IPPT 

PAN building. Three selected snapshots captured during the test drop from a height of 25 m 
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are shown in Fig. 9, depicting the initial position before releasing the capsule, the mid-flight 

stage, and the aftermath of touchdown. The corresponding velocities obtained from the tests 

are presented in Fig. 10. The maximum velocity components recorded during the drop tests 

are summarized in Table 1. 

 

Figure 9. Highlighted snapshots showcasing the trajectory of the device during free fall from a height of 25 m. 

 

The recorded images were analyzed using Kinovea software which was used to extract 

the kinematic data regarding the capsule motion. For each drop test, horizontal, vertical, 

and total velocities were determined. The analysis assumed two key conditions: (a) the 

movement of the load occurs within the designated vertical plane, and (b) the recording 

camera remains stationary relative to the chosen reference system. These conditions 

facilitated the accurate determination of the results. 

The tests conducted from lower heights (4m and 8m) displayed a systematic but irregular 

rise in the total descent velocity, reaching approximately 5 m/s (4m) and 7 m/s (8m) 

respectively. In both cases, there was a noticeable increase in speed just before the contact with 

the ground. However, Table 1 demonstrates that the descent speeds stabilized below 9m/s for 

the drop test conducted from a height of 25 m. 

 

Figure 10. Velocities calculated for the drop tests conducted from a height of 25 m. 
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Table 1. Velocities obtained from drop tests. 

Max. velocity [m/s] 

Height of test drop 

4m 8m 25m 25m 25m 

Horizontal 2.60 2.15 3.06 2.59 3.88 

Vertical 4.09 6.81 7.05 8.31 8.64 

Total 4.74 7.12 7.48 8.50 8.88 

5. CONCLUSIONS 

 Safety systems incorporating airbags for passenger protection have been used in the 

automotive industry since the 1970s. Currently, new solutions based on external airbag 

systems are being developed for protection of vehicles and pedestrians during road 

collisions. The systems for energy dissipation presented in this paper constitute a 

continuation of this technical concept, but tailored to the aviation industry. Although these 

solutions are at various stages of development, they reveal a high potential for practical 

implementation.   

The first proposed system is AdBag, an external airbag designed specifically for 

drones, which are often equipped with specialized and expensive measurement devices. 

Protecting such flying objects is of great interest to both operators and manufacturers of 

these devices. Conversely, in the case of ultralight aircrafts the application of a safety 

system is oriented not only towards safeguard of the structure but also towards protection 

of human life, which constitutes a compelling rationale for their implementation. On the 

other hand, incorporating new systems in aviation is subjected to rigorous industry 

procedures and requires holistic testing to confirm their reliable operation. The final 

developed solution is an aidrop capsule, which can be successfully applied in rapid delivery 

of critical and life-saving payloads in emergency situations, such as food in disaster-stricken 

areas or medications during rescue missions in high-altitude regions. A wide range of 

conducted research, encompassing both numerical, laboratory, and field studies, contributes 

significantly to the development of new airbag-based safety systems for general aviation. 
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Abstract. This work provides a solution for the safety enhancement of small fixed-wing
UAVs regarding obstacle detection during flight. The main goal is to implement an optimal
multi-sensor system configuration. To achieve it, preceding works regarding the integration
of available sensors in such systems were studied. As a result, select sensors (ultrasonic
sensor, laser rangefinder, LIDAR and RADAR) were modeled for collision detection and
avoidance simulations using the potential fields method. An optimization study using a
genetic algorithm was conducted to find the sets of sensors and respective orientation that
result in the best collision avoidance performance. To do so, a set of randomly gener-
ated collision scenarios with both stationary and moving obstacles were generated. This
study resulted in relatively simple detection configurations that still provided high collision
avoidance success rate. The ultrasonic sensor revealed to be inappropriate given its short
range, while the laser rangefinder benefited from long range but had very limited field-
of-view. In contrast, both the LIDAR and the RADAR are the most promising, as they
exhibit not only a significant range but also a broad field-of-view. The best multi-sensor
configurations were either a front-facing LIDAR or RADAR, complimented by a pair of
laser rangefinders pointing sideways at an angle of 10 or 63 degrees, respectively. Once the
hardware that should integrate an optimal system was known and available, the assembly
of the final system, including the sensors and a PixHawk flight controller, was designed.
The appropriate software (PX4 and QGroundControl) was also built and adapted to the
current work. To validate the proposed system, all sensors were first individually tested
before assembling the complete system. The bench tests attested the accuracy of the sensor
specifications and previous simulations. As such, ground tests using a simple rover shall
follow. Once the system is validated under these conditions, flight tests may begin.

Keywords: Sense and avoidance, collision avoidance, sensor fusion, optimization, laser
rangefinder, LIDAR
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1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have received considerable attention in a myriad of
operations due to their enhanced stability and endurance. Despite being initially devel-
oped for military purposes [1], there has been a notable upsurge in the civilian market for
UAVs [2].

Some applications of UAVs present high collision risk. Due to their ability to work in a
collaborative and cooperative manner, swarms of drones are typically used for surveillance
purposes, tracking and localizing objects. One of the most significant challenges regarding
the navigation of a swarm of agents is collision avoidance. Collision avoidance systems
are responsible for guiding an autonomous agent to safely and reliably avoid potential
collisions with other agents in the swarm as well as with other objects in the environment.
The capacity to locally sense and avoid items in the environment becomes more crucial
for agents to be fully autonomous and, in turn, for systems to be more robust [3]. Drones
are also required to exhibit a practical resolution for a Sense and Avoid feature as part
of the NextGen [4] strategy for integrating UAVs into the U.S. National Airspace System
(NAS). In fact, all UAVs must deploy an automated Sense and Avoid intelligent system
that provides safety levels comparable to or even superior to those of manned aircraft [5].

Fittingly, this work specifically addresses the safety enhancement of small fixed-wing
UAVs (maximum take-off weight < 25 kg, range < 10 km, endurance < 2h and flight
altitude < 120 m), particularly with regard to the detection of obstacles during flight and
the automatically triggered collision avoidance maneuver. It is part of a comprehensive
obstacle detection and collision avoidance system, representing a two-stage ”sense” and
”avoid” problem, being this work more focused on the former. Preceding this work, dif-
ferent detection systems were simulated using laser rangefinders and RADARs in different
configurations [6]. Through the Potential Fields method and resorting to an optimization
algorithm, a possible configuration of the UAV detection system was reached. Subse-
quently, ultrasonic sensors and laser rangefinders have been employed in the hardware
implementation of an effective Sense and Avoid System on a simple rover [7]. In this
work, the main goal is to implement an adapted version of the forementioned systems
on a small fixed-wing UAV, integrating an optimal multi-sensor configuration that can
include ultrasonic sensors, laser rangefinders, RADARs and LIDARs.

2 SENSOR MODELLING

The next subsections describe different models of active non-cooperative sensors: the
ultrasonic sensor, the laser rangefinder, the LIDAR (Light Detection and Ranging) and
the RADAR (Radio Detection and Ranging), as illustrated in Fig. 1, followed by their
comparative analysis in Tab. 1. Different models were developed by [8] and further
adapted to the present work.

2.1 Ultrasonic Sensor

This sensor generates a sound, which is then reflected by the obstacle and recorded
by the sensor. If the velocity of the radiated sound in the air medium is known, the
distance from the point of greatest reflection to the obstacle can be calculated [13]. Using
ultrasonic sensors proves to be advantageous mainly due to the ease at which this simple
technology can be sized down. However, because these are proximal sensors, their signal
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(a) Ultrasonic sensor. (Source: MaxBotix.)
(b) Laser rangefinder. (Source: Light-
Ware.)

(c) LIDAR. (Source: LightWare.) (d) RADAR. (Source: Ainstein.)

Figure 1: Active non-cooperative sensors.

Table 1: Sensor hardware specifications.

Ultrasonic
sensor

Laser
rangefinder

LIDAR RADAR

MB1242 [9] LW20/C [10] SF45/B [11] US-D1 [12]

Range (m) 7 100 45 50
Horizontal FOV (◦) 0 0.3 20-320 43
Resolution (cm) 1 1 1 –
Accuracy (m) 0.1 0.1 0.1 0.04
Update rate (Hz) 7 388 5000 100
Power supply voltage (V) 3-5.5 4.5-5.5 4.5-5.5 5-5.5
Power supply current (mA) 4.4 100 300 400
Outputs and interfaces Serial and I2C Serial and I2C Serial and I2C,

Micro USB
UART, CAN

Dimensions (mm) 22x19x15 30x20x43 51x48x44 108x79x20
Weight (g) 5.9 20 59 110

quickly attenuates and their capacity to measure distance is typically limited to less than
10 meters [14]. This type of sensor has a wide FOV that translates to a beam pattern
with axial symmetry, as represented in Fig.2.

Since the ultrasonic sensor only outputs a distance, it leaves all the interior beam points
located at a specific distance from the UAV as potential object positions. This results
in errors that shall be avoided, as well as other issues that arise from sound reflection.
The sound reflection law states that the reflected sound wave’s angle with the normal
of the surface is preserved. Thus, the ultrasonic sensor requires a perpendicular surface
in order to detect an object, which in turn implies that the targets format is crucial
to the mission’s success. It is vital to recognize the final results can only be used as
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Figure 2: Ultrasonic sensor beam pattern [7].

a reference given that these simulations only use spherical-shaped targets (and different
target formats could either improve or worsen the outcome). In short, the model must
check for these possibilities at all times:

1. The presence of any spherical surface point within the sonar beam pattern;

2. The perpendicularity of the sound wave direction with its reflecting surface.

Verifying these conditions requires considerable computing time. Therefore, a progres-
sively complex approach that avoids unnecessary blocks of code was implemented [7].
First, the beam pattern is reduced to a cylinder. When the center of the obstacle is found
to be inside the cylinder, a more thorough analysis is performed to identify which portion
of the spherical surface, if any, is in fact inside the beam pattern.The last stage addresses
the perpendicularity issue. The final surface computed in the preceding phase is defined
as a list of points with a sampling ratio 25 times bigger for each spherical coordinate (in
relation to the first list of points).

2.2 Laser Rangefinder

Laser rangefinders are able to compute distances to obstacles by emitting a laser pulse
and measuring the time it takes for the reflected beam to be detected, given that laser light
beams move at a known speed. This principle is quite common among sensors, accounting
for lightweight, low-cost technology [15]. However, it is limited by weather conditions, as
laser light might scatter in the presence of clouds, fog or atmospheric attenuation.

Given that all sensors’ models may be implemented at an angle β relative to the
longitudinal axis, our model assumes the use of two symmetrical sensors at the angles β
and −β whenever β ̸= 0.

Considering the obstacles as spheres, this can be modeled as a simple interception
between a line and a spherical surface given by

∥x− c∥2 = r2 (1a)

x = o + dû, (1b)

where x is a generic point on the line and/or sphere, c is the centre point of the sphere,
r is its radius, û is the unit vector that defines the line direction in 3D space and d is the
distance from the origin of the line. Combining both equations leads to an easily solvable
quadratic equation,

d2(û · û) + 2d[û · (o− c)] + (o− c) · (o− c)− r2 = 0, (2)
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that returns a solution if 0 < dsol < Rd. In real conditions, the laser would not reach the
furthest point, reflecting on the closest one. Therefore, if there are two solutions in this
interval, only the smallest one prevails. The reflection point with the spherical surface
can be easily obtained from Eq. (1b).

2.3 LIDAR

Light Detection and Ranging (LIDAR) emits short and precise laser light impulses with
high frequency, that in turn, are reflected and received again by the sensor, measuring
the time it took for them to return. Although this technology is similar to the laser
rangefinder’s, it is multidirectional. Thus, its execution goes beyond simply detecting an
obstacle’s range and 3-D point cloud can be acquired through a vast array of distance
measurements.

The LIDAR model is very similar to the laser rangefinder’s. As such, only the points
that are closest to the sensor are detected. This implies that if an object is totally
visible, it is considered that its half was detected and the remaining of the obstacle is
reconstructed assuming symmetry, where the center of symmetry is the medium point of
the segment connecting the first and last point of the cluster. In the present simulations,
this distance corresponds to the diameter of the obstacle. This model discards obstacles
that are hidden or outside FOV.

Figure 3: Obstacle reconstruction using a LIDAR [8].

A common issue lies within the higher distance between consecutive points in farther
obstacles which results in smaller detected dimensions (see Fig. 3). To solve this problem,
the measured diameter is passed through the time filter [16],

Dk = Dk−1 +G (Dm −Dk−1) , (3)

where G(0 < G < 1) is the filter gain, Dk is the filtered diameter at instant tk, Dk−1 is the
filtered diameter at instant tk−1, and Dm is the measured dimension at instant tk. The
gain must be carefully chosen because it affects how quickly the dimensions change. While
a small gain (i.e., slow variation) is better for noisy surroundings, it is not appropriate
for objects with high relative speeds. The gain is given by

G = 1− n
√

1− p, (4)

where p corresponds to a fraction that represents the desired accuracy of the dimensions
and n corresponds to the number of filter cycles required to get an accuracy of p. Classic
Kalman filters [17] were employed for the tracking phase, where the motion of obstacles
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was assumed to be two-dimensional, linear, and constant over successive scans. This
simplification, which takes into account a high scanning frequency, accurately captures
the targets’ state.

2.4 RADAR

Radio Detection and Ranging (RADAR) is one of the most popular sensing technolo-
gies. It consists of a transmitting antenna producing electromagnetic waves (in the radio
or microwave spectrum) and a receiving antenna, which collects waves echoed from static
or dynamic obstacles [18]. By measuring the time lapse between the transmitted and
received signal, it is possible to determine the distance between the sensor and the target,
since radio waves move at a known speed, in a way that can be projected mathematically.
Despite being very similar to the LIDAR, RADAR technology is distinguished by the
frequency of the emitted radiation.

In this case, the state estimation is more complex than the one employed in the LI-
DAR model, given the RADAR sensor provides the range, bearing, and elevation of
the observed obstacles. These outputs are polar, while the intruder dynamics are best
described in rectangular coordinates. Due to its straightforward implementation, the con-
verted measurement Kalman filter (CMKF) was chosen in [8]. The 2-D model used in the
simulations shown is represented by

{
xum = λ−1

α rm cos (αm)

yum = λ−1
α rm sin (αm)

(5)

where (xum, y
u
m) are the measurements converted to the Cartesian frame, rm is the measured

range, αm is the measured azimuth and λα is the bias compensation factor expressed as

λα = e−σ2
α/2, (6)

where σα is the standard deviation of the noise in the azimuth measurements. The
compensation of the bias is multiplicative due to the use of the unbiased conversion and
modeling the measurement errors as Gaussian white noise. The covariance matrix used
in the Kalman Filter is given by

Ru =

[
var (xum | rm, αm) cov (xum, y

u
m | rm, αm)

cov (xum, y
u
m | rm, αm) var (yum | rm, αm)

]
, (7)

with the details of the computation of these variances found in [19].

2.5 Multi-Sensor Data Fusion

All of these sensors (and respective models) provide input that allow the avoidance
system to actuate. However, if the system’s architecture is composed by more than one
sensor, the data provided must be merged in some way. Following best practices [20], the
weighted filter method is used in the present study. The principle behind this method is
simple: each sensor is given a weight that is based on how reliable it is. Reference data
sensors that provide information about the UAV state must be installed. Considering that
changes in the distance to obstacles correspond to changes in the UAV location, reference
data sensors like IMUs and optical flow sensors are used to assess the accuracy of the main
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data and aid in selecting the best sensor. In the particular case of fixed obstacles, the
aforementioned variances in distance ought to match. The weights are then calculated by
applying a differential norm to compare all conceivable sensor combinations of main data
and reference data. In each instant, the obstacle distance measurement corresponding
to the sensor with the lowest weight is chosen, and the remaining measurements are
discarded on the grounds that they are corrupted. Nonetheless, the sensor readings are
fused in accordance with their weights if the computed weights have a low variation.

3 OPTIMAL SENSING SYSTEM

An optimization study was conducted to find the types of sensors and respective orien-
tation that result in the best collision avoidance performance. To do so, a set of randomly
generated collision scenarios with both stationary and moving obstacles were generated.
The sensors modelled in Sec.2 were tested for each of these scenarios, varying their orien-
tation until optimal configurations were reached. The scenario generation algorithm and
multi-sensor optimization was further developed based on [8].

3.1 Scenarios Generation

In order to create scenarios that are suitable for this study, a scenario generation
algorithm was created. Each scenario must specify the obstacle’s initial position, velocity
and radius. It also includes a pre-planned path and waypoints that the UAV must follow.

Figure 4 is based on the graphical representation of this algorithm [7], depicting the
processes that lead to generating a scenario. Different bounds are defined regarding
the kinematic and dimensional properties of the obstacles and the UAV itself. Various
stochastic and partially stochastic processes were then extracted from these intervals,
creating random values for the different variables.

Figure 4: Scenario generation algorithm [7].

Partially stochastic processes have been used in two different cases: determining the
velocity orientation of moving obstacles and setting the position of static obstacles. In
the former, the goal is to ensure that deviation from the obstacles to the center of the
graphical window is not predicted by initial conditions, i.e., initially, the direction of the
obstacle’s velocity shall point to the centre of the window, rather than pointing outwards,
increasing the possibility of collision. In the latter, the initial position of the static obstacle
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must not be within the safety radius around the waypoint, given that the UAV must pass
through it.

Figure 5: Randomly generated scenario.

An example of a resulting scenario is plotted in Fig. 5. This scenario generating
function simply accepts the predetermined path and waypoints of the UAV as an input
before combining them with a list of moving and static obstacles to produce a scenario. If
the UAV does not go beyond any obstacle’s safety radius throughout the whole simulation
(without any sensors), the scenario will be discarded. Until there are n scenarios with an
impending collision, this process is repeated.

3.2 Optimization Technique and Problem Formulation

To determine the optimal sensor configuration, different sensor sets were tested. The
parameters that characterize each sensor model were obtained from their technical man-
uals or inferred from available data summarized in Tab. 1. Since our simulations were
restricted to the horizontal plane of motion, the vertical FOV is not relevant.

Forty collision-leading scenarios were randomly generated, with obstacle parameters
varying according to the limits set in Tab. 2.

Table 2: Data for randomly generated imminent collision scenarios.

UAV speed # fixed obst. # moving obst. obst.radius obst.speed obst.direction

[5, 15]m/s {0, 1, 2} {0, 1, 2} [0.5, 2]m [5, 15]m/s [0, 90]◦

In order to optimize the sensor orientation β, a S&A metric function f(β), to be
minimized, was defined as

f(β) =
∑

j

∑

i

(
−dmin(i) + ϕ1 |max (Rs(i)− dmin(i), 0)|2 + ϕ2 |max (Rc(i)− dmin(i), 0)|2

)
,

(8)
where the first term drives the evasion maneuver to maximize the minimum distance dmin

between the UAV and the obstacle i, the second term represents the penalty when the min-
imum distance violates the safety radius Rs (dmin ≤ Rs), and the last term represents the
penalty when the minimum distance violates the obstacle collision radius Rc (dmin ≤ Rc).
The metric accumulates not only for every obstacle i in each scenario but also for all
scenarios j. In order to penalize collision cases more than close-calls, the weights were set
to ϕ1 = 10 and ϕ2 = 50.
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(a) Pair of laser rangefinders. (b) Pair of laser rangefinders and a RADAR.

Figure 6: S&A metric as function of laser rangefinder orientation.

Figure 6 shows the metric defined in Eq. (8) for two particular sensor solution cases:
i) using a pair of laser rangefinders with a 100m range, symmetrically pointing forward
with an angle β with respect to the UAV longitudinal axis; and ii) adding a RADAR with
a 120m range pointing in the direction of the UAV longitudinal axis.

In both cases, the metric proves to be noisy. Thus, the optimization technique selected
to find the minimum of f(β) was the Genetic Algorithm (GA) implemented in MATLAB.
This gradient-free, population-based method, deals with a set of solutions that are updated
simultaneously in each iteration. In practice, compared to other minimization algorithms,
this reduces the likelihood of the result being a relative minimum. This problem can be
posed as

Minimize f(β)

w.r.t. β

subject to βmin ≤ β ≤ βmax

(9)

where βmin and βmax are the lower and upper bounds of β, respectively, to be defined for
each particular case. Notice that β is a vector if multiple sensors are used.

The initial population was set to be created with a uniform distribution; the crossover
function was set to create 80% of the population in each generation; because the variables
are bounded, the mutation function randomly generates directions that are adaptive with
respect to the last successful or unsuccessful generation, where the chosen direction and
step length satisfy the set bounds. The convergence criteria were set such that the global
minimum was found in a timely but accurate manner: a function convergence of 10−3

was used with 10 stall generations, and a maximum of 50 generations prescribed. The
population size was set to 30 individuals. These parameters were chosen following best
practices. The simulations were run on an 1,4 GHz Intel quad-core i5 with 8 GB 2133
MHz RAM.

3.3 Optimal Sensing Configurations

The following subsections are dedicated to detailing the proposed sensing architec-
tures, further explaining each solution and the respective optimal result. In the end, the
performance of the different sensor sets will be summarized and compared, in order to
implement the best solutions.
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3.3.1 Two Ultrasonic Sensors

For a set of two ultrasonic sensors, the orientation of each sensor was bounded between
0◦ and 90◦ from the longitudinal axis and the range was set to 6m. To simplify the
problem, the two sonars were considered to have a symmetrical orientation, resulting in
just one design variable. A narrow beam pattern was adopted to reduce computational
cost.

The GA minimization terminated at 20 iterations, due to average change in the fitness
value less than the specified tolerance, after performing 592 function evaluations for 39
hours and 40 minutes. It reached an optimal orientation of 36.5◦ (see Fig. 7).

Figure 7: Optimal orientation for two ultrasonic sensors configuration.

The results, summarized in the first line of Tab. 3, are not satisfactory for either
case, since the sensor’s scanning pattern allows for the safety radius to be breached too
many times. This was expected due to the short range of ultrasonic sensors, that makes
it impossible for the UAV to detect the obstacle and replan its trajectory in a timely
manner.

3.3.2 Two Laser Rangefinders

Analogous to the previous case, a set of two laser rangefinders with symmetrical ori-
entation was considered, but adopting a sensing range of 100 m.

After 19 generations, the GA optimization algorithm finished, corresponding to 564
function evaluations and a computing time of approximately 6 hours. The optimal sensor
orientation was 34.4◦, which corresponds well with one of the approximate minimum
shown in the preliminary study in Fig. 6. The optimal two laser rangefinder sensor
configuration is illustrated Fig. 8.

Figure 8: Optimal orientation for two laser rangefinder configuration.
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The performance of this optimal configuration is summarized in the second line of
Tab. 3. Although the optimal configuration only fails once in 40 scenarios, the safety
radius was breached in 23 of them. This result was expected, since a UAV equipped only
with two laser rangefinders is not capable of properly tracking the moving obstacles when
collisions are imminent.

Compared to the previous case of ultrasonic sensors, these simulations demonstrated
that laser rangefinders not only prevent more collisions but also more close calls. Overall,
these sensors perform better under the given circumstances.

3.3.3 Two RADARs

Once again, the two RADAR sensors were considered to be symmetrical about the
UAV longitudinal axis and the orientation spanned from 0◦ to 90◦. Each RADAR had a
range of 50 m, an accuracy of 0.04 m and a FOV of 43◦.

After 11 generations, the optimizer finished 340 function evaluations. The optimal
RADAR orientation was 9.2◦, as illustrated in Fig.9.

Figure 9: Optimal orientation for two RADAR configuration.

Another configuration worth studying would be a sensor orientation close to 21.5◦,
which would yield the same result as if the UAV were equipped with a single RADAR
with double FOV (86◦). Table 3 includes the comparison between this configuration, the
optimal orientation and a single RADAR pointing forward.

Regarding actual collisions, obstacles that approach the UAV from an angle are more
likely to be detected by the optimal solution rather than by the single RADAR config-
uration. As can be seen in Tab. 3, the number of failures increase as the orientation
decreases (for this particular case), which in turn makes the success rate decrease.

By overlapping the FOV of the two sensors, the accuracy is reduced through the data
fusion algorithm. Thus, in this case, having a narrower FOV (β = 9.2◦) and in turn,
the juxtaposition of both RADARs proved to be almost as effective as the double FOV
configuration (β = 21.5◦).

These simulations showed that the reduced accuracy of the RADAR proves to be
impactful on the precision of obstacle tracking compared to that of the laser sensors.
Despite having a broader FOV and resulting in less close calls, the RADAR solution
led to just as many collisions, which means that the two laser rangefinder configuration
remains as promising (same success rate). It is reasonable to say that while RADAR FOV
is more crucial for detecting obstacles, the sensor’s accuracy is the most significant factor
for effective collision avoidance.
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3.3.4 Two LIDARs

Each LIDAR was modelled with a range of 45 m, an accuracy of 0.1 m and a variable
FOV. According to hardware specifications (see Tab.1), this FOV can range from 20◦ to
320◦, thus, a FOV of 180◦ was chosen. This value ensures a reasonable trade-off between
timely scanning frequency and a broad scope.

However, this makes optimization redundant, as illustrated in Fig. 10. This happens
due to the nature of the scenario generation algorithm used: because the obstacles are
spawned inside the limits of the scenario, it is worthless to track the area behind the UAV
in the initial instant. Furthermore, from this instant on, if an obstacle were positioned
behind the UAV, it would have already been tracked before due to the wide FOV and long
range of the LIDAR. The overlapping of the FOV in the case of a two LIDAR solution
does not prove to be advantageous either. Note that this is only verified for a FOV of
180◦. If the FOV were smaller, it would be convenient to optimize the sensor orientation.

In this particular case, it is fair to state that the most beneficial solution would be to
use a single LIDAR pointing forward, since it decreases hardware cost. This configuration
is illustrated in Fig. 11.

Figure 10: S&A metric as function of sensor
orientation for a set of two LIDAR.

Figure 11: Single LIDAR configuration.

Table 3 includes the performance comparison for different orientations of two LIDAR.
As mentioned above, the success rate is the same for both cases. Compared to the previous
types of sensors studied, the LIDAR performs better overall. The wide FOV reduces the
chances of close calls and eliminates the possibility of failure.

3.3.5 Performance Comparison of Sensor Sets

Other solutions that involved three sensors were optimized, for example, including two
laser rangefinders symmetrical about the UAV longitudinal axis, whose orientations were
bonded between 0◦ and 70◦; and one fixed RADAR pointing forward. This configuration
was also replicated with two lasers and one LIDAR, two RADARs and one laser, and 2
RADARs and one LIDAR. The performance of the optimal version of these sets of sensors
is summarized in Tab. 3, as well as the results from the solutions with only one type of
sensor. Optimizations with different sets of sensors were performed but left out of this
table in order to avoid redundancy of results.
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Table 3: Comparison of the optimal performance for the different sensor sets studied.

Sensors Metric Failure Close call Success rate

2 SONARs @ 36.5 ° 804.0 4/40 30/40 90.0%
2 lasers @ 34.4 ° -414.0 1/40 23/40 97.5%
2 lasers @ 63.4 ° + 1 RADAR @ 0 ° -1240.4 0/40 11/40 100.0%
2 lasers @ 10.0 ° + 1 LIDAR @ 0 ° -1606.4 0/40 8/40 100.0%
2 RADARs @ 9.2 ° -1171.0 1/40 12/40 97.5%
2 RADARs @ 21.5 ° -1141.7 1/40 12/40 97.5%
2 RADARs @ 35.3 ° + 1 laser @ 0 ° -1480.1 0/40 9/40 100.0%
2 RADARs @ 28.1 ° + 1 LIDAR @ 0 ° -1574.3 0/40 9/40 100.0%
1 LIDAR @ 0 ° -1480.1 0/40 9/40 100.0%

For the set of scenarios tested, the RADAR performed better than the laser rangefinder,
which in turn performed better than the ultrasonic sensor if only one sensor type is to be
used. Nonetheless, this is tightly dependent on the sensor characteristics, such as range,
FOV and accuracy. Furthermore, a single LIDAR was enough to outperform all other
types of sensor.

As expected, all the solutions that present a 100% success rate include either a RADAR
or a LIDAR in their configuration. If the LIDAR is kept out, it is the two RADAR and
one laser rangefinder solution that produced the least collisions and led to the least close
calls. From these findings, and because of the 0◦ FOV of a laser rangefinder, it is expected
that increasing even more the number of sensors would lead to even better performance,
thought at a higher hardware cost.

Comparing the solutions that include a LIDAR, it is proved that it is not significantly
advantageous to pair it with other types of sensors, since it already performs distinctively
well on its own. Regardless, the two laser and the two RADAR solution are beneficial
due to reducing the likelihood of close calls. Despite the LIDAR having a wide FOV
that is not increased by either configuration, the chances of breaching the safety radius
decrease because the other sensors provide additional detection capacity. I.e., since the
LIDAR sweeps the designated area at a certain frequency, there are time instants when
a fraction of the area within the LIDAR FOV is ’unsupervised’. Therefore, it is useful to
have another set of sensors that track obstacles approaching from that specific area.

To summarize, the optimized configuration had a very similar performance in four
different cases (reflected in the Metric column), being the most promising one composed
of one LIDAR pointing forward, complemented by two laser rangefinders pointing at 10◦

sideways. These four configurations are illustrated in Fig. 12.

4 HARDWARE AND SOFTWARE IMPLEMENTATION

This section provides an introduction to the flight controller and ground control station,
including the steps that must be taken to build and adapt this software to the current
work, and the electrical layout of the final system.

Some basic concepts are needed in order to build and fly an unmanned vehicle using
PX4 [21]. PX4 is a core part of a broader drone platform that includes the QGroundCon-
trol ground station, the Pixhawk hardware, and MAVSDK for integration with companion
computers, cameras and other hardware using the MAVLink protocol.
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(a) Two RADARs and one laser
rangefinder.

(b) Two lasers and one LIDAR.

(c) Two RADARs and one LIDAR.

(d) Single LIDAR.

Figure 12: Optimal sensor configurations to be tested.

4.1 Flight Controller

PX4 is a powerful open source autopilot flight stack that can be built on a console
or in an IDE, for both simulated and hardware targets. PX4 can be run on various
hardware platforms, including Pixhawk. The Pixhawk 2.1, or Hex Cube Black, was the
chosen controller in [7], so it will also be used in the current work. Generally, the most
recent stable released version of PX4 ought to be used, to benefit from bug fixes and get
updated features. As such, this is the version that is installed by default and integrated
into QGroundControl. However, the current stable release (v1.13.3) does not include
the driver for the LIDAR used in this work. Consequently, it was necessary to switch
to a more recent beta release (v1.14) that includes it. The PX4 source code is stored
on a Github repository called PX4/PX4-Autopilot. To get release 1.14 and enable the
necessary drivers, the PX4 Developer Guide includes tutorials on Building PX4 Software
[22] and PX4 Board Configuration [23].

Once these steps are completed, the PX4 Autopilot firmware will be compiled, gener-
ating an executable file that can be uploaded onto the flight controller.

4.2 Ground Control

A ground control station works as a virtual cockpit, serving as an interface between
a flight controller and a human operator. Typically, a software running on a computer
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is connected to the flight controller through wireless telemetry. This enables the human
operator to communicate with the aircraft during flight, allowing the acquisition of rel-
evant data such as position, velocity, acceleration, or any other sensor data. It can be
installed simply by running the executable file available in the QGroundControl online
user manual [24].

The PX4 firmware can be installed onto the flight controller by following the steps in
the PX4 User Guide [25]. The user is then prompted by QGroundControl to calibrate
the vehicle, including the configuration of the controller’s built-in sensors, radio receiver,
flying modes, power, and motors.

4.3 Electrical Wiring Layout

The electrical layout can be designed once the hardware is chosen and calibrated.
It is possible to connect all the components as shown in Fig. 13 using the connections

and supplementary devices (GPS and power module) included within the Cube Black
package. It is necessary to employ a power module to provide the flight controller a
regulated power source and power the electronic speed controller (ESC) at the same time.
The ESC also draws power from a battery and operates the motor using a PWM signal
from one of the PWM I/O entries. A PPM Sum Receiver is also present, and it needs
to be connected to an RX IN input. This component converts the PWM signals from
the radio receiver into a single PPM signal that the flight controller can process. The
telemetry module communicates through radio waves with a second telemetry module
that is linked to a ground station. This allows real-time data to be exchanged and orders
to be sent to the vehicle. Lastly, the I2C ports can be used to connect sensors, namely
the ultrasonic sensot and the laser rangefinder.

Figure 13: Electrical wiring diagram [7].
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5 SENSOR BENCH TESTS

To validate the capabilities of a S&A system, several experiments were performed.
More specifically, the sensors that integrate the optimized configurations found in Sec.
3 were individually tested before the complete system. Due to the risk associated with
flight testing, experiments were based on ground tests using a simple rover. Once the
system is validated under these conditions, flight tests using a small fixed-wing UAV may
begin.

5.1 Ultrasonic Sensor

The MB1242 ultrasonic sensor must be connected to the Pixhawk 2.1 and activated in
QGroundControl in order to perform the bench tests [7]. These tests included variations
in material of the detected obstacle and angles. Figure 14a) demonstrates an experiment
where the object to detect is in front of the sensor. In Fig. 14b), the idea is to determine
the sonar capability of detecting an object which has an angular deflection (θ) in relation
to the sensor.

(a) Straight on obstacle. (b) Off-set obstacle.

Figure 14: Ultrasonic sensor bench tests.

For these first experiments, the target object is a rectangular wooden board with size
30x25cm as seen in Fig. 15. The frontal test was also repeated with a rectangular XPS
board (125.5x60cm) as the target object.

Figure 15: Experimental setup.

During these experiments, each board was positioned at different distances relative to
the sonar (20cm to 760cm) and the sensor data was recorded for 30 seconds for each
position. This method was aimed at determining, for each position, the fraction of time
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where the sensor was actually detecting its target and how much these measurements
were deviated from the correct distance.

It is important to consider that the target material could affect the performance of this
sensor. The MB1242 data sheet [9] mentions that this sensor’s ideal surface to detect is
hard, smooth and non-porous. Although wood is not a perfect example of an ideal surface,
its properties are not far from that category. To determine whether these conclusions are
applicable to other materials. A target made of XPS was also tested, which is not as hard
as wood, yet is more porous. Figure 16 represents the detection rate for both materials.
When testing with a XPS board, the maximum range decreased and the sensor performed
worse overall. This decrease in performance was foreseeable since XPS’s properties do not
match those of an ideal material (hard, smooth and non-porous).

Figure 16: MB1242 detection rate for different materials.

The last significant point is that the performance of this sensor is impacted by the
target’s rotation within its inertial referential. Only when the sound is reflected back
from the target can the sonar identify it. According to the principles of sound reflection,
this is only conceivable if the normal vector of the surface in question is parallel to the
trajectory of the sound being emitted until it reaches the desired target.

Empirically, this translates to the results that follow. Figure 17 shows the sensor’s
detection rate for various distances and orientations. As expected, the sensor performed
better when the obstacle was completely in front of it, achieving a maximum range of 435
cm with perfect a detection rate, although the datasheet states 640 cm. Additionally, the
maximum range decreased when augmenting θ, which was also an expected behaviour.
Moreover, this sensor proved to be very directional as it stopped detecting any targets for
θ ≥ 40◦.

Figure 18 shows the average absolute error at each distance from the sensor. No relation
between the real distance from the sensor and its error was detected, given that all points
seem to be almost randomly dispersed from 300 cm onwards. Moreover, the average
absolute error never surpassed 30 cm. This error occurs in the wood frontal test, which
leads to the conclusion that this board might not match the ideal surface for this type
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Figure 17: MB1242 detection rate for different angles of incidence.

of sensor to detect. However, the collision avoidance system needs to be robust enough
for most materials, i.e., if the available sensor fails this bench test, it is not sufficiently
accurate for the purpose of this work.

Figure 18: MB1242 average absolute error for different angles of incidence.

According to the datasheet [9], the sensor is calibrated and tested to provide stable
range readings to large targets even in electrically and acoustically noisy environments.
It also states that the sonar should ideally be used indoors. Nonetheless, it is important
to note that these tests were done outdoors, due to the nature of this project. Since this
sensor is intended to integrate a collision avoidance system for small UAVs, its applications
require that it performs well outdoors. However, this also means that the results shown
can and have been affected by exterior noise.

Additionally, an experimental beam pattern was generated using the maximum range
recorded for each orientation, shown in Fig. 19. Such beam patterns tend to be particu-
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larly advantageous for S&A systems since they restrict their detecting volume, ultimately
allowing the controlling device to pinpoint the target’s location with a high degree of
accuracy.

Figure 19: MB1242 empirical beam pattern.

5.2 Laser Rangefinder

Prior to testing, it was necessary to configure the LW20/C laser rangefinder within the
flight controller’s environment [7]. Once the configuration was done, the perfomance of the
sensor could be assessed through an identical experience to that of the sonar. However,
since the laser rangefinder is completely directional, it is not necessary to experiment with
off-set obstacles.

In frontal tests, the laser maintained a perfect detection rate before reaching 85 m,
as seen in Fig. 20. From this distance onward, the detection rate decreased non-linearly
until it reached 100 m (marked as a dashed red line in Fig. 20). Ultimately, the complete
range promised in the datasheet was not attained with a perfect detection rate.

Figure 20: LW20/C detection rate.
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These tests also served to prove how much of an impact directionality has on this type
of sensor. The wooden board had to be perfectly aligned with the laser rangefinder in
order for it to detect it correctly. When translating this to the optimal sensing system
designed in Sec. 3, it means the sensor has to be flawlessly aligned with the UAV’s
longitudinal axis.

Lastly, the average absolute error, plotted in Fig. 21 was mostly between 0 and 50 cm,
but increased with the distance from the sensor. The results were not as satisfactory for
distances greater than 50m.

Figure 21: LW20/C average absolute error.

5.3 LIDAR

The chosen LIDAR was the SF45/B model by LightWare [11]. It can be connected to
the flight controller’s TELEM2 port (TX and RX pins) using a DF13 header. The red
and black wires (VCC and GND) were connected with an external power supply and the
remaining three wires (blue, white and green) were left unconnected. Figure 22 ilustrates
the eletrical wiring diagram for this configuration.

Figure 22: Eletrical wiring diagram for SF45/B.
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The LIDAR also comes with a micro USB port that connects to any PC running the
LightWare Studio application for visualisation of results, making configuration changes
and upgrading the firmware. The sensor should be configured by setting the scanning
angle limits to -90◦and 90◦, the baud rate to 921600 and the update rate to 50 Hz. It is
also important to make sure ’scan upon startup’ is enabled.

To activate this sensor within the QGroundControl environment, it is necessary to
follow the instructions in Sec. 4. After that is assured, the user can access the vehicle
setup section and, within the parameters tab, set SENS EN SF45 CFG to the desired
serial port (TELEM2).

In the bench tests, the angles of the detected obstacle and scanning speed of the sonar
were varied. Figure 23 shows the resulting scans from two different experiments: a) the
object to detect is in front of the sensor; and b) the object to detect is at 90◦ in relation
to the sensor. In these tests, the forementioned rectangular XPS board (125.5x60cm) was
used as target.

(a) Straight on obstacle. (b) 90◦ off-set obstacle.

Figure 23: LIDAR bench tests.

On an unobstructed rugby field, the XPS board was positioned at different distances
relative to the LIDAR (0 to 50m) and the sensor data was recorded for 30 seconds for each
position. As expected, this sensor performed better than the others, maintaining a perfect
detection rate through all its range in both experiments, as seen in Fig. 24. However, Fig.
25 shows that the average absolute error was overall lower when the obstacle was aligned
with the sensor. This is likely because the LIDAR scans back and forth from -90 to 90◦,
meaning that for each sweep, it passes twice through θ = 0◦ and only once through each
limit.

Figure 24: SF45/B detection rate. Figure 25: SF45/B average absolute error.
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Although the SF45’s update rate was set to 50Hz, empirically, it is, on average, 37.2Hz.
In LightwareStudio, it is also possible to calibrate the sensor’s cycle delay, which is in-
versely proportional to its scanning speed. The minimum cycle delay (5) corresponds to
the maximum scanning speed (6.3 rad/s) and vice-versa. This implies that, by choosing
a higher sweep speed and maintaining the angle limits, the arc of circle that is not being
detected between each measurement increases. Figure 26 illustrates how the length of
the arc traversed varies analytically with the distance to the sensor and the angular ve-
locity. This graphic shows that, although the LIDAR has a 50m range, at the maximum
scanning speed, it might not be possible to detect an obstacle less than 8m wide at this
distance. When the scanning speed is reduced, the sensor is likely to detect a target of at
least 2.2 m at maximum distance. At minimum speed, this stops being relevant within
the 50 m range. However, if covering a larger area quickly is more important, sacrificing
some visibility at the maximum range might be acceptable. Ultimately, the compromise
should be based on the specific needs and constraints of the system.

Figure 26: SF45/B undetectable arcs for different scanning speeds.

6 CONCLUSIONS

This work presents a comprehensive solution for enhancing the safety of small fixed-
wing UAVs by addressing the critical issue of obstacle detection during flight. A set of
select sensors, namely the ultrasonic sensor, laser rangefinder, LIDAR, and RADAR, were
identified and further employed in modeling collision detection and avoidance simulations
using the potential fields method.

To determine the best combination of sensors and their orientations, these simulations
were used in an optimization study. The study revealed that relatively simple detection
configurations can yield a high success rate in collision avoidance. While the ultrasonic
sensor is found to be inadequate due to its limited range, the laser rangefinder benefits
from a long range, but has a restricted field-of-view. On the other hand, both the LIDAR
and RADAR prove to be the most promising options, offering not only a substantial
range but also a wide field-of-view. Based on the optimization study, the recommended
multi-sensor configurations consist of a front-facing LIDAR or RADAR, accompanied by
a pair of laser rangefinders pointing sideways at either a 10 or 63 ◦angle.

To validate the proposed system, the necessary hardware and software were successfully
implemented, which allowed for the individual testing of each sensor. The bench tests
confirmed the accuracy of the sensors specifications and previous simulations. In the case
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of the ultrasonic sensor, the importance of the material and the angular deflection of the
obstacle to be detected was highlighted. As for the laser rangefinder, the key factor proved
to be directionality. The LIDAR presented less shortcomings, as expected. However, the
sensor’s parameters (update rate, angular velocity and scan angle limits) directly affected
its performance. More specifically, it is necessary to reach a compromise between the
LIDAR scan speed and the effective range of visibility.

In the future, these sensors will be integrated into a multi-sensor configuration to
be tested on a rover. Subsequently, the system’s performance will be evaluated under
realistic conditions through flight testing. Overall, this work provides a comprehensive
methodology for testing and validation of an optimized multi-sensor system configuration
and the proposed system holds great potential for enhancing the safety of small fixed-wing
UAVs during flight.
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Abstract. Satellite systems increasingly rely on software in order to deliver the intended
functionality. While the reliance on software has enabled the miniaturization of space sys-
tems, as well as improved performance in various technologies such as image processing
or telecommunications, it has also brought up some issues in reconciling hardware and
software architecture. As an approach for better integration of hardware and software
architectures in modern space systems, we argue that some software modules should be
considered independent at the first level of the hierarchical system decomposition. We ar-
gue that such software modules are not contained within a more abstract entity featuring
hardware and software, which we would typically call a ”subsystem”. Rather, it is a ”soft-
ware subsystem” which can be developed separately from the processing platform including
the devices (sensors, actuators, external memory, etc.) and the processor on which it
is deployed, and can be deployed to one or more processing platforms whose hardware,
firmware and other software components may be developed by separate contractors. We
demonstrate the feasibility of this approach through a case study using a software-intensive
university CubeSat. We show that this approach allowed for extensive code reuse, simpli-
fied the implementation of subsystem interfaces, and enabled better engineering solutions
through increased specialization during the design phase. We also discuss some limita-
tions of the approach, such as increased software overhead and integration issues with
off-the-shelf subsystems. We conclude that the concept of abstracted software subsystems
can contribute to better satellite system performance by allowing further software special-
ization in an industry which has traditionally been conservative in this domain.

Keywords: Satellite, Software, Architecture
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1 INTRODUCTION

Spacecraft are complex systems comprising multiple components, or subsystems, which
are typically developed by specialized teams from different engineering disciplines. As all
complex systems, the behaviours of spacecraft emerge from the interactions between sub-
systems, which means that the overall system performance is unlikely to be satisfactory
if each subsystem is optimized according to domain-specific rules. The development of
spacecraft architecture, that is, the definition of which subsystems are used, how they in-
teract, and their individual performances, must involve multidisciplinary optimization if a
globally acceptable performance level is to be achieved. The increasing commercialization
of the space industry poses a challenge for multidisciplinary optimization by imposing new
objectives in the form of non-functional requirements (also called the ”ilities”), as does
the increasing reliance on software for delivering functionality, which in effect introduces
a host of new performance parameters which were hitherto not considered. The challenge
in integrating non-functional and software properties in multidisciplinary optimization is
compounded by the fact that both issues can be difficult to assess quantitatively.

The quantitative assessment of non-functional properties of systems has often been
performed in the systems engineering and engineering design literatures through mod-
ularity analysis. Modularity is a measure of subsystem independence, which is linked
to properties such as reliability, maintainability, flexibility, etc. The space industry has
evolved toward very modular architectures, with most spacecraft featuring some sort of
on-board computer for command and data handling, a telecommunications subsystem for
transforming digital information to and from radio frequency signals, an attitude control
system and a propulsion system for changing the spacecraft’s position and orientation to-
wards Earth, and a power handling system for harvesting energy from solar panels, storing
it, and distributing it to the other subsystems. As software is increasingly employed for
previously hardware-based functionalities, software-specific functionalities (such as digital
interfacing) must be replicated across different physical subsystems. This can increase the
overall project cost due to the duplication of effort as well as from the increasing complex-
ity of the digital interfaces, particularly when bus-type communications systems (which
involve appropriate interfacing between all subsystems) are used. This suggests that the
traditional spacecraft system decomposition may no longer ensure adequate modularity.

In this paper, we propose an alternative spacecraft system decomposition, featuring
a Software Subsystem (SWSS) as a generic module which has no unique physical imple-
mentation, instead being deployed to other physical subsystems but being independently
developed. We argue that the application of this concept could lead to advantages such
as reduction of overall development effort, ease of system integration (leading, in turn,
to early system-level testing), and improved performance stemming from specialization.
We describe the concept of a SWSS in Section 3. We then demonstrate the feasibility
and desirability of the concept through a case study with a real spacecraft in Section 4.
We discuss the implications of the concept for multidisciplinary optimization of space-
craft architectures and conclude the article in Section 6. In the next section, we present
some related work on the topic of modularity assessment, its relationship to non-functional
properties, and the difficulty in integrating the analysis of hardware and software systems.
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2 RELATED WORK

Modularity is a key parameter in evaluating non-functional properties of complex sys-
tems, and can be quantitatively measured. Modularity can be defined as the extent to
which each system component, or subsystem, can be developed separately from the oth-
ers. For this to occur, the interactions between subsystem components (from which its
functionality emerges) must be significantly stronger than the interactions between com-
ponents belonging to different subsystems. Modularity analyses are useful for comparing
different architectural designs according to how ”clustered” their physical components
are. These analyses are frequently complemented with the use of algorithms to change a
pre-defined component grouping and arrive at an optimal modular architecture [1–3]. New
developments in the application of clustering algorithms to system architectures include
adding design constraints to the problem such as specifying that two components must
be kept apart [4] and accounting for different preferences in system decomposition [5], an
issue which arises from the fact that different stakeholders identify different relationships
between components in the same system [6, 7].

Multiple metrics have been proposed for modularity analyses, many of which rely on
the adjacency matrix of a graph representation of a system to assess the coupling between
modules [8]. The adjacency matrix of a graph is a square matrix where the Aij = 1 if
there is an edge from node i to node j, and 0 if there is no relationship. Graph based
analysis allows abstracting the detail of each component in a system and understanding
characteristics of the system’s structure. Practitioners employ various metrics, usually
based on a ratio between intra-module and inter-module interactions, and discussions of
modularity analysis often address the adequateness of these metrics in different situations.

There are notable differences in the software and systems engineering literature regard-
ing research on modularity, each with their own interpretation of what is a component and
what constitutes an interaction. The software literature focuses modularity assessments
on the static structure of the source code repository, with nodes representing folders, files,
or functions [9]. Interactions between nodes often represent function calls or file inclusion,
or how often files are committed at the same time [10]. The systems engineering literature
employs more diverse interpretations for what constitutes a node, either focusing on the
physical components or on an abstract functional architecture [11]. Interactions between
nodes can represent physical or geometrical connection, information flow, or estimates of
”design parameter influence”.

While the different approaches enrich the discussion by presenting different views of
what constitutes modularity, they make it difficult to compare results. Because there is no
overlap between software and hardware approaches, it is difficult to assess modularity in
space systems for which functionality depends on both. Some research (from the software
literature) also suggests that the abstraction of the hardware architecture can lead to
”modularity violations”, where engineering changes are required of two components which
were theoretically not linked but which share a hardware interface [12]. This presents
a research opportunity to study the impact of assessing modularity for an integrated
architecture rather than for separate hardware/software architectures.

It is therefore difficult to assess modularity in modern spacecraft, which increasingly
derive their capabilities from software. There are also challenges involved in reconciling
hardware and software architecture practices [13], making it harder to understand how
some sort of ”interface” could be developed to ”bridge” the gap in modularity assessment.
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The remainder of this article proposes the ”software subsystem” concept as a possible
approach to bridging this gap.

3 SOFTWARE SUBSYSTEMS: DEFINING THE CONCEPT

In this section, we propose a new framework for spacecraft systems architecture which
enhances the role of software as a driver of functionality for space missions, describe
some opportunities this framework offers, and discuss required changes to development
processes to enable its implementation.

We argue that, in modern space systems, some software modules should be considered
independent at the first level of the hierarchical system decomposition. By software mod-
ule, we mean a collection of source code files which, when compiled and deployed on a
processing unit, make the hardware behave in a well defined and predictable way. We use
the plural ”modules” in the sense that there can be multiple collections of source code
files, deployed to one or more processing units, each of which independent. What makes
a module independent is that it can be developed concurrently with other modules, pro-
vided that the interfaces to the processing units and to other software modules, as well as
requirements, are defined. The final aspect of our claim, that some software modules can
be considered independent at the first level of system decomposition, entails that a soft-
ware module is not contained within a subsystem. Rather, the module can be developed
separately from the processing platform including the devices (sensors, actuators, external
memory, etc.) and the processor on which it is deployed, and can be deployed to one or
more processing platforms whose hardware, firmware and other software components may
be developed by separate contractors. We call such an independent software module a
”software subsystem”, as illustrated in Figure 1.

To be independent as described above, a software subsystem must retain its configu-
ration when deployed, by which we mean that the collection of source files is not changed
regardless of which processing platform it is being compiled for. This is similar to the
integration of hardware subsystems, in that the subsystem component parts and their
interrelationships do not change when the subsystem is integrated. However, the inter-
action between hardware and software depends on the specific microprocessor device, as
different units have different physical architectures, different interface capabilities, and
different ways of making the stored program data interact with the I/O configurations.
This mismatch between the specific operation of a microprocessor unit and the abstract
nature of a software subsystem must be solved through the implementation of a hardware
abstraction layer (HAL) by the team in charge of developing the processing platform.
The implementation of a HAL is a typical practice in embedded systems programming,
allowing the separation of the higher-level application code from the details of the micro-
processor operation. Within the framework of our proposal, the HAL constitutes not only
an internal interface defined by the subsystem developer, but also a system-level interface
managed by the prime contractor.

In addition to being abstracted from the operational details of the hardware on which
it will be deployed, the software subsystem must be abstracted from the specific software
functionalities which are not shared across subsystems. Typical spacecraft subsystems,
such as attitude control or power distribution units, rely on embedded software in order
to deliver their core functionality. This functionality is specific to those subsystems and
therefore not implemented in others unless there are redundancy concerns. The focus of
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Figure 1: Comparison between a traditional spacecraft architecture (a) and the proposed
architecture featuring a Software Subsystem (b).

these software components is often domain specific and deeply intertwined with knowledge
of the physical processes they act upon. Accommodating these capabilities in the software
subsystem itself would make it more complex and would negate the benefits of modularity.
Instead, the software subsystem must be viewed as a service which is available to enhance
the capabilities of the subsystem and which is useful for multiple subsystems. Together
with the previous point regarding the need for a HAL, this entails that hardware subsys-
tem developers implement both the application-level software which is specific for each
subsystem and the low-level software which determines how the microprocessor interacts
with other hardware devices.

4 CASE STUDY: ISTSAT-1

In this section, we describe how a software subsystem has been successfully imple-
mented in a real satellite system and compare this system to a traditional development
approach. The ISTSat-1 CubeSat [14] is the subject of this case study. We consider
that the spacecraft itself, as well as the development approach which lead to its final
flight qualification, adequately embody many of the new features of the changing space
industry which we discussed in Section 1. The spacecraft was developed using a low-
cost, high-risk approach with very limited use of radiation-hardened components and a
heavy reliance on off-the-shelf electronics with no flight heritage. An iterative develop-
ment approach was followed, allowing for continuous refinement of requirements as they
were better understood by end users and developers. A lot of effort was put into ensuring
that the system is modular (as is typical with CubeSats) and, thereby, partially reusable.
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Finally, system capabilities are mostly implemented in software, which was developed as
abstractly as possible in order to allow for code reuse.

4.1 ISTSat-1: a traditional system decomposition

The ISTsat-1 spacecraft can be decomposed into the ADS-B payload module and the
flight platform. The flight platform carries the technology needed to ensure the relia-
bility and maintainability of the spacecraft during the mission lifetime and to provide
the required logistics for the payload module. Because the structural part contributes
little to the functionality of the system, we will not discuss it in this work. There are
seven different avionics systems, five of which were developed in-house and two of which
are commercially available products. The Antenna Deployment Mechanism (ADM) is a
commercially available product which is responsible for deploying the VHF/UHF dipole
antennas (which are too long to fit unfolded within the 1U CubeSat envelope) upon com-
mand. The Solar Panels (SP) are also commercially available products which feature two
triple-junction photovoltaic cells each, generating electrical power when in sunlight, in
addition to hosting coarse sun sensors (which indicate how the panel is angled towards
the sun) and embedded coils which can be used as magnetic torquers.

The following paragraphs provide a small description of the in-house developed space-
craft subsystems. For architectural purposes, the ADM can be considered a component
of the Telemetry, Tracking, and Command (TTC) subsystem, whereas the SP can be
considered part of the Electrical Power Supply (EPS) subsystem. The global architecture
is depicted in Figure 2.

OBC

EPSCOM

UART

VHF

SPI

TTC

ADS-B PL

UHF

Ground Station

I²C

Aircraft

ISTSat-1

Figure 2: ISTSat-1 architecture. The thick lines represent digital interfaces.

The Payload (PL) subsystem detects aircraft messages encoded and broadcast using
the ADS-B standard. When a valid message preamble is detected, it decodes the message
and compares the contents against data filters set by the operator, thus allowing only valid
messages (for instance, only messages containing information about aircraft position and
speed) to be stored. It does not store the message data internally. Rather, it uses the I²C
bus, with which it interfaces with all subsystems, to send the data to the COM subsystem,
where it is stored. The decoding algorithm is based on a C language implementation of the
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dump1090 algorithm originally developed in Matlab. This allowed deploying the algorithm
on a ARM Cortex-M4 processor running a real-time operating system rather than a
dedicated FPGA board, leading to lower power implementation - which was required due
to the limited power generation capabilities of a 1U CubeSat platform.

The On-Board Computer (OBC) implements most of the fault detection, isolation and
recovery functionality in the spacecraft, as well as the operational mode management. As
the system mode and state manager, it is the OBC which determines which subsystems
should be on and off. It is the OBC which periodically requests health information (for
instance, temperature data) from all other subsystems and either stores this data or sends
it to the TTC to be broadcast. It also estimates where the spacecraft is pointing (relative
to the Earth) and drives the magnetic torquers embedded on the SP to create a magnetic
dipole which interacts with the Earth’s magnetic field, changing the spacecraft attitude.
Lastly, it implements part of the digital communications protocol stack, which comprises
the logical interface between the spacecraft and the mission control ground station. This
means that ground commands sent to any subsystem are ”dropped” on the I²C bus by
the OBC. It implements an optional reliability layer which is useful when users wish to
download stored data. Despite the wide scope of the OBC’s functionalities, one of the
main requirements guiding its development was that the subsystem should have a very
low power consumption, leading to low computational resources.

The Communications Processor (COM) subsystem is a more computationally power-
ful processing platform which enhances some of the OBC’s functionalities, at the cost of
increased power consumption. It features an alternative implementation of the commu-
nications protocol stack which allows for the use of a higher bitrate digital modulation
scheme than that allowed by the OBC. It also significantly expands the spacecraft’s data
storage capacity, allowing the OBC to forward the housekeeping telemetry data to its
memory banks. All ADS-B message data is stored in the COM subsystem, as are the
configurable parameters of the PL. As is the case with the OBC, the COM subsystem
can create a reliable communications protocol with the ground station to ensure that no
data is missing (e.g. due to packet losses) when stored data is downloaded. The COM
subsystem, like the PL, is powered off while the spacecraft is in Safe Mode.

The TTC subsystem is responsible for maintaining the radio link with the control
ground station, as well as broadcasting digitally modulated packets featuring telemetry
data which can be interpreted by any radio amateur operator with the decoding software.
It features a modem which handles the modulation function, transforming the digital
data stream to be transmitted to the ground station into a baseband analog stream that
drives a transceiver and is delivered to the antenna. Conversely, the modem performs
the demodulation of the incoming analog signals to a data stream to be delivered to
other subsystems. When interacting with the OBC, i.e., when using the lower bitrate
modulation scheme, the TTC implements the lowest level of the communications protocol
stack. When interacting with the COM, the whole protocol stack is implemented in
the COM. The TTC directly interfaces with the ADM, to which it sends the antenna
deployment command once the spacecraft is ready (45 minutes after deployment from
the launcher). Lastly, the TTC features a Beacon module, a completely independent
transmission system with its own modulator and power amplifier, which allows sending
short amounts of information encoded in Morse.

The last subsystem, the Electrical Power Supply (EPS), implements all of the power
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handling and distribution functionalities of the spacecraft. It implements a Maximum
Power Point Tracking (MPPT) algorithm to optimize power draw from the illuminated
solar panels, and distributes it to other subsystems as well as to a lithium-polymer battery.
When no solar panel is illuminated, it distributes the energy stored in the battery. It
receives commands from the OBC through the I²C bus in order to know which modules to
power according to the spacecraft operational mode, and it also uses the I²C bus to receive
commands from ground (for instance, to reboot a certain subsystem by cutting a specific
power regulator). It implements a safety mechanism whereby it reboots a subsystem
if the average power consumption suddenly increases above a certain threshold. It also
implements a small monitoring function by requesting a keep-alive signal from the OBC.
Lastly, in order to ensure safe operation even in very cold environments which can be
expected while the spacecraft is in eclipse, the EPS monitors and controls the battery
temperature using resistive heaters.

4.2 ISTSat-1 functional chains

The exchange of information between the processing units of the various physical sub-
systems is a critical aspect of delivering the overall system functionality. For the most
part, this exchange of information relies on a low-level digital communications interface
such as I²C or SPI to encode data into electrical signals and vice-versa, and some software
component, running in each processing unit, which attributes meaning to the received bit
frames and dispatches some sort of action within the processor. The following paragraphs
provide some examples of how sequences of message exchanges between the processing
units are used to deliver functionality. Although there are many different ways of con-
ceptually organizing these examples, we have chosen to broadly separate them between
those which are triggered externally (through control ground station commands) and
those triggered internally by some sort of timer.

Many spacecraft functionalities involve replying to a command sent from the control
ground station. The most basic operations involve issuing a command to one of the
physical subsystems and receiving a data frame containing information. One example
is issuing a ”ping” command, which returns a short acknowledgement message. Other
examples include requesting the value of an internal variable (for instance, the value read
by a temperature sensor in the OBC board) or requesting a change in the value of a
configurable parameters (to which the physical subsystem would reply by confirming that
the value had been changed). All the physical subsystems support data requests and
configuration changes. The same mechanism is also used for deploying actions which are
specific for each physical subsystem. For instance, one could issue a command directly
to the EPS to turn the battery heaters on. The operator would not be able to check
that the heaters are indeed on without issuing a data request (for instance, checking that
the battery current drain had increased), but would receive an acknowledgement that the
command has been well interpreted.

In all of these scenarios, the basic exchange mechanism is the same, regardless of
the physical subsystem involved. The chain of message exchanges involved in a ”ping”
command to the EPS is depicted in Figure 3. First, the radio frequency signal sent by
the ground station is converted into a packet by the TTC (#1). The TTC then sends
the message to the OBC using the UART interface (#2) , which ”drops” the message on
the I²C bus. Note that, at this point, no processing unit ”knows” what the command is:
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they are just relaying the message. Also, during this process, neither the TTC nor the
OBC expect any reply once their part of the message exchange is complete. Finally, the
target subsystem interprets the message, performs the intended action, and replies using
the reverse procedure (#4,#5,#6).

5

3

OBC

4

EPSCOM

6

2

TTC

ADS-B PL

1

Ground Station

ISTSat-1

Figure 3: Functional chain involved in ”pinging” the EPS subsystem.

4.3 An alternative decomposition of ISTSat-1: the HouseKeeping Subsystem

The interactions described above involve multiple networking functionalities. First,
the sender of a command must be able to encode information in such a way that the
receiver can decode it and trigger the appropriate response. This is done by establishing
a communications protocol which defines the different fields included in a message (i.e.
what information is encoded in each group of bits), and by defining a list of available
commands and their opcodes for each subsystem. Second, the sender should be capable
of handling instances where the receiver does not respond (e.g. by resending the com-
mand), and the receiver should handle errors (such as wrong opcodes, possibly stemming
from corrupted messages) and handling new commands while a previous one is still un-
der execution. Additional functionalities which are needed to execute only some of the
scenarios described above include ensuring a reliable stream of ordered data, as well as
securing some commands such that they can only be executed by an authenticated user.
While these functionalities could be implemented separately, the ISTSat-1 team decided
to define a single codebase which is compiled to each physical subsystem and which in-
terfaces with its application-level and driver-level software. This new software subsystem
is the HouseKeeping System (HKS), as depicted in Figure 4.

The HKS implements the functions which each physical subsystem requires in order to
logically interface with one another. This means that whenever one subsystem must issue
a command to another (for instance, the OBC requesting telemetry data from the EPS),
the application-level routine in the ”sender” subsystem will call a HKS function to issue
a command. This function builds the message according to the type of command and the
command parameters to be sent. The HKS then calls the subsystem-specific driver-level
software to physically send the command (e.g. using the I²C bus). When the ”receiver”
subsystem gets the command, it is the driver-level software which calls an HKS function
to interpret the command and to dispatch it. The HKS does this by calling a function
which is implemented on the application-level subsystem-specific software. The interface
between the HKS and the subsystem-specific software is defined as a list of functions, both
at application level and driver level, which each subsystem must implement. The function
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Figure 4: An alternative decomposition for ISTSat-1, in which the HKS provides logical
interfacing functionalities which are traditionally implemented separately in each physical
subsystem.

arguments are then used in order to differentiate between different processing units and
between commands to be executed. The complete list of commands and arguments is
provided in a configuration file which is, at all times, accessible to all developers, and
constitutes a single source of truth for this information (i.e. once a new command is
implemented in a subsystem, others can issue this command just by calling the HKS
function). The HKS is compiled to the OBC, EPS, COM, and ADS-B PL from the same
codebase, which is placed in the project repository in a shared folder.

5 DISCUSSION

Based on the description provided in Section 4, we consider the HKS to comply with
the specification for a Software Subsystem as defined in Section 3. First, all physical
subsystems (except the TTC, for which the networking functionalities were implemented
separately) rely on the same codebase for compilation of the HKS. The HKS is also
independent both from the domain-specific application software and from the low-level
hardware interface software for each physical subsystem.

The development of the HKS as a software subsystem allowed engineers to focus on their
area of expertise, such as power electronics, attitude determination and control, embedded
systems, digital signal processing, etc. This was particularly important for the ISTSat-1
project, for which each subsystem was developed as part of students’ MSc dissertation
work. Because the networking aspects themselves constitute an engineering speciality,
this system decomposition allowed all students to develop technology which was relevant
for their specific engineering degrees while spending less time in development activities
which would not be as relevant for their evaluation. This ”efficiency” is compounded by
the fact that because networking is not their area of expertise, they would have spent a
disproportionate amount of time implementing that functionality. As a result, and also
given the time-bounded nature of MSc dissertation work, it seems reasonable to argue
that the overall quality of the system improved due to this system architecture.

In addition to perceived improvements in system quality, the HKS subsystem allowed
for early integration of system-level prototypes. In a traditional decomposition, the de-
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velopment of interfacing functions is typically a lesser concern in comparison to the de-
velopment of highly specialized, domain-specific capabilities. As such, subsystems are
seldom ready for preliminary integration before the domain-specific capabilities are fully
developed, despite the fact that interactions between subsystems are often the cause of
system-level issues. By developing the HKS subsystem concurrently with the domain-
specific functions, the team were able to integrate preliminary prototypes of the physical
subsystems, which uncovered several integration issues which would have remained unre-
solved until final system integration. Because of this, the team were also able to perform
multiple system-level tests (particularly those which stressed the interactions between
subsystems) before all domain-specific capabilities were fully implemented [15], which in
turn uncovered more design flaws when they could still be corrected with relatively low
cost.

A final advantage of implementing the HKS was the improved flexibility stemming
from the easy expansion of command lists and the single configuration file allowing all
subsystems to ”know” which commands and data variables were available from other sub-
systems. This allowed for a more agile approach to requirements and interfaces definition,
which proved to be crucial for a relatively inexperienced team - as demonstrated by the
significantly different command and variable lists at the beginning and at the end of the
project. The flexibility of the HKS also allowed expanding on some of its core functions to
deliver new capabilities which were not strictly considered at the beginning of the project,
such as the capability to store information in non-volatile memory which is available in a
different subsystem.

The implementation of the HKS also brought some challenges. The most obvious one
is the overhead stemming from the generic nature of the software subsystem, which led to
some memory and CPU issues in the OBC, which features a very low power microproces-
sor. A less obvious one is the difficulty in integrating physical subsystems which do not
share the same interface. This was the case with the TTC, for which the networking and
digital interfacing capabilities were separately implemented. During development, it was
assumed that all processing units would run the same version of the HKS and, therefore,
would always be fully compatible with each other in terms of networking. Manually up-
dating the TTC interface to keep up with changes in the other subsystems was demanding
and proved to be a source of some issues during integration testing.

Further work is necessary in order to fully validate this concept, as the educational
setting of the ISTSat-1 may not be an accurate proxy for the industrial setting in which
the concept would be used. Developing the HKS depended greatly on the open commu-
nication between the networking and domain-specific engineering teams, which might be
harder to ensure when proprietary information is involved. The scope of the engineering
work behind each subsystem for ISTSat-1 is also more limited than that for larger space-
craft, in which large teams may be involved in each subsystem. As teams grow larger,
the specialization ”penalty” stemming from the incorporation of different domains (for
instance, networking and attitude control) in a single subsystem may be smaller than in
a one or two person team.

6 CONCLUSION

In this paper, we have presented the concept of a software subsystem and demonstrated
its feasibility in spacecraft system decomposition by providing the example of the ISTSat-
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1 CubeSat. We believe that this decomposition is different, but potentially beneficial
for spacecraft projects in that it allows for further specialization of software practices,
enhances concurrent development of subsystem capabilities, and allows for early prototype
integration, thereby introducing some ”agility” intro a traditionally sequential project
cycle. This could allow for faster development cycles and seems to be a good approach in
reconciling hardware and software architecture practices in the space sector.

This work contributes to the literature on the application of multidisciplinary design
optimization to spacecraft design by providing a different decomposition approach which
could be used to inform modularity studies. Given that modularity is a key predictor
of non-functional properties of systems, and given the importance of these properties
in the satisfaction of stakeholder expectations for spacecraft performance in a changing
space industry, we argue that modularity is an important parameter to account for in
multidisciplinary trade studies. The software subsystem concept can be used to generate
alternative system architectures, thereby expanding the design space for optimization
algorithms to explore.
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Abstract. System analysis is necessary to identify and characterise the emerging
behaviour of multiple components, or sub-systems, synthesised together to fulfill a new
function. Although this is well known, it is hugely important to consider a system-based
approach for the exploration and understanding of the behaviour of new technology in ex-
isting and mature systems. One example is the introduction of a considerable amount of
energy storage in the form of batteries in conventional aircraft configurations. We would
like to identify how such technology influences the behaviour of the aircraft but also what
is the required level of performance of this technology for any meaningful impact on the
environmental targets. We performed such analysis using an open case study of a re-
gional aircraft and open models for the simulation of battery behaviour, the design space
exploration, and the interactive visualisation of multidimensional data. The results show
that considerable advancements are required in all three key aspects of batteries, energy
density, durability, and safety. In this study, we have quantified the required energy den-
sity above which meaningful trade-off analyses can be performed and such characteristics
provide input to technology roadmaps.

Keywords: interactive visualisation, technology roadmap, aircraft energy storage, design
space exploration, visual analytics
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1 INTRODUCTION

The aviation industry is experiencing a significant shift towards sustainable and en-
vironmentally friendly solutions [1]. In line with this trend, the development of hybrid-
electric aircraft has gained considerable attention and investment. With increasing en-
vironmental regulations, volatile fuel costs, and heightened customer expectations for
greener transportation, airlines and manufacturers are under pressure to reduce their car-
bon footprint and mitigate environmental impact [2]. These aircraft hold the potential
to reduce emissions, improve fuel efficiency, and contribute to a greener and more cost-
effective transportation system [3]. Thus, the market for hybrid-electric aircraft is poised
for substantial growth in the coming years with market forecasts indicating a significant
demand for these aircraft, driven by the need for more sustainable and economically viable
transportation [4].

The development of hybrid-electric aircraft presents complex challenges that require a
systems-based approach. Traditional methods of technology development and roadmap-
ping may not fully capture the interdependencies and synergies among different technolo-
gies and subsystems. To address this need, a holistic methodology is necessary, taking
into account the intricate relationships between technologies, system architecture, market
drivers, and performance requirements. Such a systems-based approach enables informed
decision-making, efficient resource allocation, and improved technology adoption in the
context of hybrid-electric aircraft development. Existing studies have highlighted the
importance of integrating systems thinking, modelling techniques, and advanced visuali-
sation tools to enhance technology roadmapping processes [5–9].

To demonstrate the practical application of our system-based approach, we have chosen
the development of a 50 passenger hybrid-electric regional aircraft as an illustrative case
study. The choice of this aircraft is motivated by the work done in the FUTPRINT50
project [10–12]. This example allows us to delve into the specific challenges and considera-
tions of hybrid-electric technology in the context of regional air travel. By focusing on this
example, we aim to provide valuable insights into the technology roadmap development
process, identification of gaps, and alignment with strategic drivers for hybrid-electric
aircraft in the regional aviation market. Hybrid-electric aircraft combines traditional
aviation propulsion systems with electric propulsion, harnessing the benefits of both tech-
nologies [13]. By integrating electric motors and batteries, these aircraft can reduce re-
liance on fossil fuels, minimise environmental impact, and enhance operational efficiency.
The development of hybrid-electric aircraft represents a critical step towards achieving
sustainable aviation and addressing the growing concerns regarding greenhouse gas emis-
sions and offer a good study case for system-based technology forecasting methods.

The development of hybrid-electric aircraft is influenced by a range of strategic drivers
that shape the technological landscape and market dynamics. Understanding these drivers
is crucial for effective technology roadmapping and making informed decisions. In Figure
1 the 5 key enabling technologies are shown, as also identified in the FUTPRINT50
roadmap.

The advancement of hybrid-electric aircraft is intrinsically tied to breakthroughs in
all these technologies and their interactions. More importantly, the advancements in
battery technology are fated to play the biggest role in the development of hybrid-electric
aircraft [14, 15], and we use this technology as an example to demonstrate our proposed
methodology. However, it should be emphasised that we consider this technology as an
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Figure 1: The FUTPRINT50 hybrid electric aircraft architecture and the key enabling
technologies.

energy storage means on board the aircraft. Indeed, this can be in the form of batteries,
but also in other forms, such as PowerPaste by Fraunhofer IFAM [16].

The seamless integration and widespread adoption of hybrid-electric aircraft by air-
liners depend on the availability of supporting infrastructure. These include establishing
charging or refueling stations, implementing battery swapping or fast-charging technolo-
gies, and developing suitable electrical grid systems capable of meeting power demands.
The readiness of infrastructure and investments in charging networks greatly influence
the feasibility and scalability of hybrid-electric aircraft operations. Therefore, a careful
technology roadmapping approach should take these infrastructure considerations into ac-
count to ensure the feasibility of hybrid-electric aircraft and their integration into existing
air transportation infrastructure.

In the next section, we will introduce our system-based approach for technology roadmap-
ping, leveraging systems modelling and visual analytics to address the gaps in energy
storage technology and enable the successful implementation of hybrid-electric aircraft.

2 METHODOLOGY

2.1 Systems-based Design Space Exploration

The design space exploration (DSE) methodology used in this study was developed by
Spinelli et al. [17] by combining set-base design (SBD) principles with multi-disciplinary
optimisation (MDO).

SBD revolves around three core tenets: reasoning on design intervals (sets) and not
individual design points, focusing on eliminating unfeasible designs instead of searching
for the optimum, and delaying commitment to a design as much as possible [18]. Im-
plementing these principles allows to explore the effects of the design parameters and its
implications on downstream preliminary design phases, hence helping avoid pitfalls.

The advantages of this methodology have been shown in reducing design uncertainty
from changing requirements [19] and avoiding cost increments due to rework [20]. It also
produces a lot of alternatives, which can be useful in designing a family of products for
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the same requirements. However, evaluating many designs in parallel incurs higher com-
putational costs, which may not be feasible for high-fidelity methods. Furthermore, the
elimination procedure relies on a method for mapping the requirements to the input pa-
rameters. The most common quantitative approaches rely on expert rules or handcrafted
knowledge in the form of utility functions [21]. While easier to interpret and implement,
these approaches may not be robust when developing novel systems where little experience
is available.

The SBD framework developed by Spinelli et al. [17] addresses these limitations by
utilising a Bayesian interpretation of the requirements and utilising probability to esti-
mate the likelihood a set is capable of producing a satisfactory solution. This approach
avoids explicitly defining rules that map the inputs to the quantities of interest of the
system, instead it extracts the knowledge directly from the models utilised in the func-
tion evaluations. The procedure shown in Figure 2 follows two general steps: the first
one, defined as the exploration phase, divides the input parameters into levels and utilises
the probabilistic approach to eliminate those combinations which are likely to not return
a feasible solution. The second step, named the search phase, extracts the local design
points by introducing a MDO problem in each surviving set. This procedure allows to
convert the sets in actual local Pareto fronts, which can be then visualised and analysed
for extracting knowledge about the system behaviour.

Figure 2: The Set-based Probabilistic Design Optimisation process.

This two step approach enables one to carry out thorough design space exploration
without evaluating areas of the design space that would not yield feasible designs. It
was shown by the authors that this approach allows to reduce the computational time by
80% [22]. The code is available online in its GitHub repository [23].

By combining the DSE framework described above with a parametric model encom-
passing the technological scenarios to be explored it is possible to generate data necessary
for roadmap definition. The dataset is processed using a visual analytics tool, which
allows to highlight information for decision-making purposes.
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2.2 Visual Analytics for Data Exploration

Visualisation is the process of converting data into pictures for easier human inter-
pretation. This facilitates the cognitive process of acquiring information and knowledge
from the data [24]. Colours, spatial relationships, dimensions and patterns are mapped
to the different features of the dataset for extracting and communicating the underlying
meaning. Therefore, information can be extracted from the data and synthesised into
knowledge that the engineer uses to move the product design forward.

Challenges arise when the number of data dimensions is greater than three. Scatter
plots can ideally support up to 5 dimensions by introducing scales for hue, saturation,
marker size and marker shape on top of the two axes. In practice the result would be a
very cluttered and hard to read diagram.

Parallel Coordinates (PC) diagrams allow one to support many dimensions and provide
a birds-eye view of the relationships within the data. PCs are composed of parallel axes
for each dimension of the dataset. Each data entry is represented with a polyline that
intersects the axes at the value of each dimension. PCs can effectively display data up to
10-15 dimensions [25]. Figure 3 shows an example of a PC plot for the iris dataset.
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Figure 3: Parallel coordinates plot of the iris dataset.

Parallel Coordinate diagrams are particularly suited for pattern discovery and ex-
ploratory data analysis. Inselberg [26] famously published an article where he describes
the process as a ”multidimensional detective”. In essence, PCs shine in their ability to
propagate selections from one axis onto all the dimensions. This enables to analyse data
more quickly and identify patterns. For example, in Fig. 4 the setosa and versicolor
datapoints have been selected and highlighted. The setosa class specifically has a clear
separation in petal width and petal length: after selecting these datapoints by limiting
the range of petal length between 1 and 2 cm, it is discovered that the sepal length for this
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Figure 4: Selections in a PC plot.

class of flowers ranges between 4.3 and 5.8 cm. The same effect can be achieved globally
by applying a colour scale reflecting the values one axis on the lines. Fig. 3 shows how the
sepal length is correlated with the other dimensions. Other than colour and selections,
PCs portray the correlation between each adjacent axis through the disposition of the
lines.

For these reasons, PC plots are best suited for interactive visualisation tools. Specifi-
cally, the ability to change the order of the axis and select ranges within the axis themselves
provide the user with exploratory capabilities that cannot be obtained with scatter plots
alone. Kipouros et al. [27] demonstrated an interactive visualisation tool that combines
PC and scatter plots. The engineer would use the PC plot as a guiding tool to isolate
interesting data points, and the scatter plots as a magnifying scope for understanding the
correlations between two specific dimensions or visualising the Pareto front. Inselberg’s
book on the topic [28] is the definitive resource for implementing and utilising PCs.

A further enhancement of interactive visualisation is the addition of regression and
machine learning methods to extract new information on the fly. The combination of
these has been named Visual Analytics. Piotrowski et al. [29] presented an enhanced
tool in which kriging was used to produce new datapoints and support the exploration of
hypotheses and ’what-if’ scenarios.

In this study, considerations regarding the technological parameters have been ex-
tracted using a web-based interactive visualisation tool, implementing both PC and scat-
ter plots [30]. The strengths of both diagrams is enanched thanks to their integration,
with selections propagating from one plot to the other.
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3 EXEMPLAR CASE STUDY: ENERGY STORAGE FOR REGIONAL
AIRCRAFT

The aim of this case study is to analyse the performance of a battery pack with futuristic
technology. The results will provide insights into the behaviour of the energy storage
system in the context of a regional hybrid electric aircraft, a turboprop of the ATR-72
class, retrofitted with a parallel hybrid-electric propulsion system.

The propulsion system is a hybrid parallel system, where the gas turbine shaft and
the electric motor shafts are connected to the propeller through a gearbox. The battery
pack provides power to the electric motor according to the energy management strategy
(EMS), which sets the degree of hybridisation (DOH) during the mission. DOH is defined
as the percentage of propeller power required to be provided by the electrical powertrain.
EMS in this study is defined as a linear function of DOH, one for each mission segment.

In the mission analysis procedure, the battery pack is first sized to match the load
required by the EMS. Then an ageing simulation is carried out, assuming 14 flights ev-
ery week for an entire year of operations. Since it is expected that the capacity of the
battery will reduce due to use, which under the original EMS would cause the battery to
overdischarge, the EMS is automatically scaled such that the depth of discharge (DOD)
of the battery does not exceed 80%.

The gas turbine model predicts fuel consumption by interpolating performance data
from a simulated PW-127, while NOx emissions are captured using the P3T3 method.
The battery model consists of a Thevenin equivalent circuit model of the cell dynamics,
which are then scaled using the layout of the pack. The ageing of the cells is simulated
with a polynomial model which captures both degradation caused by time and charge-
discharge cycles. This updates the lumped parameters and the total capacity of the cell
model, affecting its dynamics.

Details on the modelling can be found in literature published by the authors [31].

Input X = [h0climb, h1climb, h0cruise, h1cruise]

minimise Mfuel,MNOx , rdegr (1)

subject to TOM ≤ 23, 000 kg (Psat ≥ 50%)

ebattery = 750 Wh/kg

The optimisation problem is formulated in Eq.(1). The objective is to minimise fuel
consumption, NOx emissions and the degradation of the battery pack after one year of
operations. This last parameter is defined as the ratio between the fuel consumption after
one year o operations and the original fuel consumption with a fresh battery.

Since the aeroplane is not fully re-designed, the take-off mass was constrained to the
ATR-72 MTOM of 23,000 kg. In this specific scenario, it is assumed some of the payload
mass of the ATR-72 is used for accommodating batteries, hence the number of passengers
is reduced to 50. The constraint is marked with a satisfaction probability of 50%.

The mission used for sizing and analysing the propulsion system is the design mission
of project FutPrint50 [32], a regional flight of 800 km from Edinburgh to Dublin,
with an alternate of 200 km to Belfast. The EMS is specified only for the climb and
cruise segments, since they have been shown to be the most significant in the reduction
of emissions [17]. Hence, the number of input parameters is in total 4, two DOH for
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climb and two DOH for cruise. Tab.1 shows the range and number of levels of the input
parameters. These in total yield 256 sets to be evaluated.

Table 1: Details on Input Parameters.

Name Symbol Range Number of Levels
DOH at beginning of climb h0climb [0,1] 4
DOH at end of climb h1climb [0,1] 4
DOH at beginning of cruise h0cruise [0,1] 4
DOH at end of cruise h1cruise [0,1] 4

Results from the analysis will be compared against the dataset published previously
by the authors [31], after normalising the fuel consumption and the emissions against the
baseline value (the aircraft evaluated with DOH set to zero in the entire mission). The
baseline values can be found in Tab.2.

Table 2: Baseline Quantities.

Take Off Mass 17,792 kg
Fuel Consumption 1242 kg
NOx Emissions 8.59 kg

4 RESULTS

Figure 5 shows the web-based interactive visualisation tool used for analysing the
dataset produced in this test case. Data is selected in the PC diagram and propagated
onto the six available scatter plots. Each of them can be defined by selecting the columns
to be shown in the X, Y, and colour dimension.

The parallel coordinates plot of Figure 6 presents the Pareto front results of the test
case design space exploration, integrated with the results previously published [31], such
as to highlight the effects of an energy storage system with very high energy density, as
the previous study considered only values in the range 350-550 Wh/kg. The visualisation
enables us to identify the relationships between the input parameters (EMS), the objec-
tives, and the constraints. The input parameters have been transformed into average
DOH and ∆DOH to better highlight the effects of the objectives on the EMS topology.
The selections reflect the points with the lowest fuel consumption and NOx emissions, for
all levels of degradation.

Figure 7 compares the three objectives in scatter plot form. As it was evident in
Figure 6, the degradation objective is in strong contrast with the other two performance
objectives. Indeed, as it was found in previous studies [31], having higher DOH for better
performance with a fresh battery caused a short operational life of the battery pack.
EMS with lower average DOH fared better but at the cost of smaller improvements in
fuel consumption and NOx emissions.

Another point of note is that the high energy density of 750 Wh/kg enabled higher
average DOH compared to previous results, with very high amounts in the climb segment.
Consequently, both the fuel consumption and the NOx emissions have been significantly
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Figure 5: Decision-making Visualisation Framework webtool.
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reduced. On the other hand, the degradation is significantly higher, with the maximum
being 17.5%, while the highest of 550 Wh/kg is only 11%. The mechanism causing this
was identified in the mass of the battery and the reduction of effective energy density as
the capacity of the cells degrade [31]. Nonetheless, with the higher energy density it is
possible to achieve better performance for the same value of degradation. For instance,
with rdegr = 1.074, the 750 Wh/kg case achieves a reduction of 10.5% of fuel consumption
and 13.6%, while the 550 Wh/kg case yields 6.1% and 8.6% respectively.

Thus, investing in better energy storage technologies would grant much better envi-
ronmental compatibility, even when taking into account the degradation of the battery
packs. Most importantly, the tendency visible from the Pareto front (Figure 7a) suggests
a non-linear growth of the reduction of emissions and fuel consumption with the improve-
ment of the technology. Henceforth, higher returns should be expected in investing in
projects that aim to significantly improve energy storage, rather than gradually improve
it.

(a) (b)

(c)

Figure 7: Pareto Fronts of the three objectives, with selections from Fig. 6

The two performance objectives present an indication of topology preference. When
fuel consumption is minimised, the climb EMS is descending (high DOH at the beginning
of the climb phase), while the cruise EMS increases its DOH as the aeroplane gets lighter.
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(a) (b)

Figure 8: Average DOH of Climb and Cruise for NOx and Fuel consumption.

Conversely, if minimal NOx is the priority, the EMS of both mission phases are quasi-
constant, with a slight tendency towards decreasing-DOH in climb and increasing-DOH
in cruise. This result is coherent with previous findings [17], where NOx emissions were
found to be correlated with the average DOH through the mission. Hence distributing
electrical power across the mission would help reduce it the most. This is also shown in
Figure 8, reflecting the different sensibilities of the two objectives.

Figure 9: Comparison between total battery mass and number of cells.

Figure 9 compares the number of cells installed in the battery pack versus the total mass
of the pack itself. The data points are aligned in lines with different slopes, increasing as
the energy density increased. The cause is to be traced in the mass of the individual cell.
As the energy density of the pack grows, each individual cell is lighter, hence it is possible
to use more of them for the same amount of mass available on board. Furthermore, it
enables greater flexibility in arranging the cells without exceeding the maximum take-off
weight. In fact, the design points with high energy density also have the highest take-
off mass (Figure 6), due to this ability to exploit all the available battery mass before
violating the take-off mass constraint.
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Finally, the trade-off between climb and cruise DOH appears to follow a consistent lin-
ear relationship for the maximum benefit of the emission objectives. This hypothesis was
further tested and verified using the embedded Machine Learning model in the interactive
visualisation software developed by Piotrowski et al. [29], and shown in Figure 10.

5 LIMITATIONS AND FURTHER WORK

We considered the utilisation of a web-based decision-making software environment,
and a Visual Analytics decision-making software, for the analysis of the behaviour of the
energy storage system and its impact on a new regional aircraft architecture. The two
platforms offered complimentary functionalities for the analysis of a multidimensional data
set and to discover further insights. The web interface will be further improved to include
uncertainty visualisation supported with the latest Artificial Intelligence algorithms for
instant analysis and computational experimentation for the understanding of the impact
of new technology in derivative airframe configurations. The analysis will be further
extended to consider interactions with other key enabling technologies as shown in Figure
1.

6 CONCLUSIONS

In this work, we combined a set-based design space exploration methodology to anal-
yse the behaviour of gradually increased energy density of batteries. We combined these
results with interactive visualisation of multidimensional data in order to discover rela-
tionships between all parameters and decision criteria. This analyses led to the expression
of hypotheses which were further tested in a Visual Analytics software environment.

We discovered a non-linear improvement in the emission criteria when the energy den-
sity is 750 Wh/kg at the pack level. This value expresses a threshold for technology
advancements. However, this raises questions about safety, which can further compro-
mise the pack energy density, as well as the degree of degradation. But most of all, even
if there will be a technology to achieve these advanced technical characteristics, there will
be the question of whether these can be achieved on a scale and at an industrial level.

Finally, we discovered a consistent linear relationship between the DOH at climb and
cruise for different energy density values that secure minimum achievable generation of
emissions.

To conclude, the proposed methodology can be used to explore interactions of non-
conventional aircraft architectures and systems when little or no prior knowledge of their
behaviour and interactions is available.
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Abstract. Airbus is a global aerospace pioneer, operating in the commercial aircraft, he-
licopter, defence and space sectors. It has built on its strong European heritage to become
truly international. It has constantly innovated since its inception, bringing novelties such
as the two-crew cockpit, fly-by-wire or composite structures. Looking into the future, the
aerospace sector faces a new challenge which is that of sustainable flying. Airbus is em-
bracing this challenge through an industry-wide multi-prong approach that is based upon:
fleet renewal with the latest generation aircraft, introducing disruptive technologies, im-
proving the air transport operations and infrastructure, introducing Sustainable Aviation
Fuel (SAF), and applying carbon offsetting and capture techniques. The combined effect
of these measures is expected to bring the air transport sector to net zero carbon emissions
by 2050. From a future aircraft design standpoint, disruptive technologies are being devel-
oped across all domains to improve aircraft weight and aerodynamics, as well as developing
radically new propulsion systems. Several novel propulsion technologies are entering the
testing phase that hold promise for future aircraft applications, such as distributed hybrid
propulsion and open fan engines. The energy sources are also being disrupted to remove
the need to rely on fossil fuels, with two major pathways emerging, namely SAF that al-
lows up to 85% reduction in carbon emissions across the lifecycle, and hydrogen that could
reach up to 100% reduction. These developments can only be brought to life with the in-
tellectual and innovation power of highly skilled professionals, therefore Airbus is actively
recruiting the future team members to pioneer sustainable aerospace for a safe and united
world.

Keywords: aerospace, next generation, disruptive technologies, carbon emissions, future
aircraft design, sustainable aviation fuel, propulsion technologies

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

239



AeroBest 2023
Lisboa, 19-21 July 2023
©ECCOMAS, Portugal

WING STRUCTURAL DESIGN FOR A MAME UAV USING
HIGH-FIDELITY NUMERICAL TOOLS

Vı́tor M. T. Silva1, Nuno M. B. Matos2 and André C. Marta1
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Abstract. With the rapid growth of the UAV market, the search for more efficient
solutions promotes a huge competitive advantage for manufacturers. With the implemen-
tation of optimization techniques and the use of high-fidelity analysis in aircraft design,
it is possible to develop better solutions. This work addresses the desire of a leading UAV
manufacturer to improve its fleet to remain competitive in the surveillance UAV mar-
ket. For this, a structural analysis tool using the finite element method is demonstrated,
which is then used as part of a structural optimization framework. For this demonstra-
tion, static analyses of the wingbox of an existing UAV model, with a CFRP material with
different lay-ups in certain areas of the model, are carried out for cruise and 4g load case,
obtaining results of deformation and failure of this wing. These results help to identify
possible weaknesses of the wing, as well as evaluate how the wingbox structural behaviour
changes. The goals of this work include the validation of the numerical design framework
using available experimental data and the study of alternative wing structural solutions.
The results of the experimental and computational analyses presented slight differences.
This was the expected behaviour due to model simplifications, which allowed for the the
framework to be validated and proven useful. Three new optimal wingbox solutions were
found, having a theoretical mass reduction of about 50%, while respecting a safety factor
of 1.5. The first was optimised without displacement constraints and the other two had
a maximum allowed displacement. These two differ on the optimization starting point to
check for possible local minima, which were found.

Keywords: optimization, design framework, adjoint method, finite element method,
composite materials, fiber orientation
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1 INTRODUCTION

With the continuous development and technological improvements of the Unmanned
Aerial Vehicles (UAV) industry, different sizes and configurations were found useful to
cover a wide range of missions. Nowadays, these vehicles are equipped with various
electronic equipment, such as different cameras and sensors, depending on their intended
purpose, and turning these in highly complex systems. Some use cases of these Unmanned
Aerial Systems (UAS) and their advantages include: inspection of photovoltaic plants, to
reduce the time of manual inspections [1]; precision agriculture, for weed mapping and
management, vegetation health and growth monitoring, irrigation management and crops
spraying [2]; urban environment and management, to give real-time monitoring of traffic,
road conditions as well as building observation [3]; disaster hazard and rescue, to quickly
and accurately respond when necessary as well as post-disaster assessment and emergency
response in remote places; and maritime monitoring, to control oil spills, gas pipes, whales
and marine life, tracking fishing boats as well as controlling illegal immigration.

Various applications have been brought up and many more are yet to be developed.
Investments in the UAS industry have been a trend for the past couple of years, with many
companies, mainly start-ups, directing their funds to explore new and original applications
to be competitive. Since 2000, more than 300 start-ups entered the UAS market, focusing
on hardware, support services and operations [4]. They have gathered more than 3 billion
USD to develop the industry with new applications.

In order to remain competitive in this growing market, the demand for highly efficient
and optimized UASs increases.

2 TEKEVER’S AR5 UAS

Tekever is a company founded in 2001 that manufactures and operates their UAS
mainly for surveillance missions. An objective was set to optimize their most advanced
Medium Altitude Medium Endurance (MAME) UAS - the AR5 (Fig. 1) - using high-
fidelity tools. This paper is the starting point of this project, introducing the numerical
tools and proving the concept.

Figure 1: Tekever AR5

The main AR5 specifications are resumed in Tab. 1.
For take-off and landing specifications, this UAS needs a track. As a drawback, it can

not take-off with crosswinds. Regarding the payload, one advantage is that, for rescue
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Table 1: Some characteristics of the Tekever’s AR5 [5]

Wing
span

Cruise
speed

MTOW
Payload
capacity

Endurance
Communications

range

7.3m 100 kmh−1 180 kg 50 kg 12 h∗ Unlimited (SATCOM)

∗ Expected endurance with inflating raft

missions, that may require fast action on site, the AR5 can transport an inflating raft.
However, this added weight might affect the total endurance, and reduce total operating
time from 16h to 12h. Finally, since it uses Satellite Communication (SATCOM) for
communication with the operator, there is no range limit for operating, which is really
advantageous.

Since the performance evaluation of the configuration come usually from estimations
with empiric correlations, very simplified calculus or, in later stages, computational solid
mechanics (CSM) for a structural case, it would benefit from the creation of some auto-
mated steps. In [6], Grose explains that the competitiveness of a company is high if: it
can provide fast responses to consumer needs by reducing development or manufacturing
times; the aircraft is produced with the least possible costs; and if it requires low main-
tenance, indicating a good final product quality. Using optimization as a tool to improve
in all these aspects, the design traditional process can be adapted by having an optimizer
directly and automatically changing some pre-established design variables. By combining
this with a judgment of an experienced engineer, the final product should also have a
superior quality.

3 STRUCTURAL ANALYSIS AND OPTIMIZATION

3.1 Finite Element Method

For the structural analysis presented in this paper, the FEM method is used due to
its high capabilities of modelling complex geometries and its high use in the aeronautic
industry for structural applications.

For thin structures, like the wing’s skin, 2D shell elements are used to model the middle
plane of the skin [7].

In this work, the elements used in the analysis are the 4-node quadrangular elements
based on a Mixed-Interpolation of Tensorial Components (MITC) approach, which avoid
shear and membrane locking [8, 9]. It is important to note that a modelling error is
introduced which makes these not suitable for shell structures with high thickness and
curvature radius.

For these elements, the basis theory is the classical first order deformation theory
[9]. In this, the transverse plane does not remain perpendicular to the mid plane after
deformation including shear strains in model. With it, the variables to be determined
in this formulation are the mid-plane displacements and the rotations about the x and
y axis. To add the rotation about z (also called ”drilling degree of freedom”), a penalty
approach is used [10, 11]. Then, with laminate constitutive equations, the stresses are
obtained from the strains.
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3.2 Material Characterization and Modelling

The structures to be analysed are composed of Carbon Fiber Reinforced Polymer
(CFRP) plies that, when stacked, form the laminate. Since each ply is composed of
unidirectional fibers in a matrix medium, it presents an orthotropic behaviour, with 9
independent properties that define this material constitutive law:
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with Ei as the Young’s Modulus for the ith direction, νij as the ratio between transverse
shear in the jth direction to the axial strain in the ith direction with an applied stress in
the ith direction (Poisson’s ratio) and Gij as the shear modulus for the ijth plane [9].

To model the composite material that composes the wingbox, a smeared approach is
used [12]. This method describes the composite structure using fractions of plies (fθi) and
their respective angles (θi) It is necessary to provide the elastic and strength properties
of each ply as well as the total thickness of the laminate. With these, the global stiffness
matrix is weighted with each ply fraction of a certain orientation. A visual diagram of
the geometric parameters necessary for this model is presented in Fig. 2.

Figure 2: Composite representation with the necessary parameters to define the smeared
model

To predict failure of composite materials, it is necessary to characterize the composite
strength for different load conditions (axial, transverse and shear tensile stresses), which
are reflected in their longitudinal, transverse and shear tensile strength parameters.

In this work, the Tsai-Wu Criterion is used and defined as

FTW = F1σ1 + F2σ2 + F11σ
2
1 + 2F12σ1σ2 + F22σ

2
2 + F66σ

2
12 , (2)

where σi is the stress component in the ith direction in the principal material coordinates
of each ply (1 to 3 are normal stresses and 4 to 6 shear stresses) and Fij are coefficients
depending on the material normal and shear strengths [9]. Note that, when this FTW
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failure index is equal or above 1, material failure is expected and no stress components
are present in the 3rd direction of space since the shell elements assume that σz = σ3 = 0.

3.3 Optimization Techniques

The general structural optimization problem can be stated as

Minimize f(v, u1, ..., unl
)

w.r.t. v, u1, ..., unl

governed by Ri(X
N(vG), vM , ui) = 0

subject to gi(v, ui) ≤ 1

(3)

where f(v, u1, ..., unl
) is the objective function, gi(v, ui) is a constraint vector for the ith

load case, up to a total of nl, x = (vG, vM) are the design variables, divided as geometric
and material design variables, respectively, XN(vG) are the nodal locations, ui are the
state variables for the ith load case and Ri are the finite-element residuals.

to compute gradients, either of the objective function or the constraint functions with
respect to the design variables. These are very computationally expensive to calculate and
many methods have been developed to make them more efficient to compute. Kennedy
& Martins [13] and Kenway et al. [14], for example, used a gradient-based algorithm for
an aerostructural optimization of a wing and a wide-body transport aircraft, respectively,
due to the large number of design variables (thousands). The most important aspect
in these cases was that the derivatives were obtained by the adjoint method. Another
use for this type of gradient-based methods is given by Werter & De Breuker [15] by
using a globally convergent method of moving asymptotes (GCMMA) to minimize a wing
weight with respect to some lamination parameters and the laminate thickness. One of
the key aspects in this case was that the derivatives were obtained using the direct method
and with the use of analytically obtained sensitivities of the objective and constraints’
functions with respect to the design variables.

In the context of this work, the gradient-based optimization seems the most favourable
approach since the number of design variables is high and the functions of interest are
smooth. One of the most commonly used approaches to solve the optimization prob-
lem is recurring to a sequential quadratic programming method. One great example is
the Sequential Least Squares Quadratic Programming method (SLSQP) which uses the
Han–Powell quasi-Newton method with a BFGS update of the B-matrix and an L1-test
function in the step-length algorithm [16]. This method approximates the Lagrangian to
a quadratic function and linearizes both equality and inequality constraints [16, 17]. A
studied performed by Zhoujie et al. [18] showed that, for a multi-dimensional Rosenbrock
function, the SLSQP algorithm performed the best among several other gradient-based
and -free methods, converging the fastest, with the least amount of function evaluations.
Not only that, but both this algorithm and the Sparse Nonlinear Optimizer (SNOPT)
performed the greatest when obtaining the minimum CD when changing the wing twist
or shape. This results were especially good using the adjoint method for the derivatives.
This SLSQP method is commonly used in aerodynamic shape optimization [19, 20], airfoil
shape optimization problems [21] as well as aerostructural problems [22].
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3.3.1 Adjoint Method

To compute gradients, either of the objective function or the constraint functions with
respect to the design variables, the chosen method and the one used by the optimization
framework, is the adjoint method. Since these gradients are very computationally ex-
pensive to calculate, many methods have been developed to make them more efficient to
compute. Kennedy & Martins [13] and Kenway et al. [14], for example, used a gradient-
based algorithm for an aerostructural optimization of a wing and a wide-body transport
aircraft, respectively, due to the large number of design variables (thousands), which is
bigger than the number of constraints’ functions. On the other hand, if the situation was
the opposite, the direct method used by Werter & De Breuker [15] to minimize a wing
weight with respect to some lamination parameters and the laminate thickness, would be
the most efficient. One of the other key aspects, besides the use of the direct method in
this case, was the use of analytically obtained sensitivities of the objective and constraints’
functions with respect to the design variables that help gradient-based optimizations to
be faster.

The derivatives of an objective function f and the residual of the governing equation
R(xn, yi(xn)) can be given by the chain rule as

df
dxn

= ∂f
∂xn

+ ∂f
∂yi

dyi
dxn

dR
dxn

= ∂R
∂xn

+ ∂R
∂yi

dyi
dxn

= 0 .
(4)

where xn are the design variables and yi the state variables. Using a reduced-space (or
nested) approach [23] to the problem, the structural analysis of the model is solved re-
peatedly in each optimisation iteration. This means that the derivatives in Eq. (4) are
necessary in each iteration. With variational calculus, the partial derivatives from the
first expression can be easily obtained. However, the total derivative dyi

dxn
is computa-

tionally expensive since it requires solving the structural model, after imposing a small
perturbation in xn, to obtain yi. To tackle this problem of solving the total derivatives,
the derivative of the residuals in Eq. (4) can be re-written as

∂R

∂yi

dyi
dxn

= − ∂R
∂xn
⇔ dyi

dxn
= −

[
∂R

∂yi

]−1
∂R

∂xn
. (5)

Replacing this in Eq. (4) of the function f ,

df

dxn
=

∂f

∂xn
+
∂f

∂yi

[
∂R

∂yi

]−1
∂R

∂xn
. (6)

Using

ψT ≡ ∂f

∂yi

[
∂R

∂yi

]−1

(7)

[
∂R

∂yi

]T
ψ =

∂f

∂yi

T

(8)

where ψ is called the adjoint vector. Solving the equivalent Eq. (8), also called adjoint
equation, to obtain ψ, it can then be replaced in Eq. (5) and the derivative of the function
f found. This procedure to compute derivatives is called the adjoint method. From Eq.
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(8), it is possible to conclude that in order to obtain the adjoint vector, this equation
needs to be solved as many times as the number of functions f that there are in the
optimisation problem. So, this problem complexity scales with the number of functions.

3.4 CSM Analyses’ Steps and TACS Framework

From the CAD file containing the geometry information of the wingbox to be evaluated
up to the output results of the finite element analysis, and the posterior optimization, a
sequence of steps need to be followed and different software used, as presented in Fig. 3.

Figure 3: Flowchart of the structural optimization framework with highlight in yellow of
the structural analysis components

Firstly, the geometry defined in the CAD needs to be exported as a file with a specific
compatible format to be read by a mesh generator software. This geometry definition file
contains information about the nodes location, elements identification and nodes which
define them and the type of elements used. This is fed into the CSM software so that the
finite element model can be used with that discretization.

The CSM software used is TACS [8], an open-source FEM solver. In TACS, load cases
are set to condition the problem before it is solved and boundary conditions imported
from the mesh definition file. In every problem iteration, the TACS software gives function
values and gradients to a gradient-based optimizer, which then iterates until the optimum
solution for the intended problem is found. A flow chart representing the TACS workflow
is presented in Fig. 4.

4 WING STRUCTURE ANALYSIS

4.1 AR5 Wing Definition

The baseline and start of the optimisation process of the AR5 is its wing, since it is
the main component of the UAV. The wingbox can be parametrized in several ways. To
do this, some groups within the structure are created, sharing the same parameters, to
later, in the optimization process, these varying equally within the group. In Fig. 5 the
groups can be observed in different colours as well as the internal wingbox structure and
reference frame used throughout its analysis. The parameters that define each group are
total thickness, type of materials, their proportions and the ply angles (parameters from
Fig. 2).

The AR5 wingbox is composed sandwich composite components with different thick-
nesses and fractions of core and shell material. A representation of these sandwich com-
ponents is shown in Fig. 6.

The core consists on a low weight rigid foam which gives the necessary stiffness to
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Figure 4: Flow chart of the steps to solve an optimization problem

Figure 5: Representation of the design variable groups

the wing, with very low weight. Different versions and proportions of this core are used
depending on the wingbox section and a detailed description cannot be provided due to
confidentiality restrictions. The physical and mechanical properties used are summarized
in Tab. 2. It is important to note that, only the in-plane properties were the necessary
manufacturer’s properties since in the shell formulation, the transverse strain in neglected.
This means that, since the foam core properties in-plane are independent of direction, this
material can be modelled as isotropic.

Table 2: Foam core properties

Density
Tensile modulus in the plane
Shear modulus
Tensile strength in the plane
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Figure 6: Representation of the sandwich composite (CFRP with black matrix and grey
fibers and foam core foam in pink)

Table 3: Density and physical properties of CFRP ply

Density∗

Young’s modulus (Fiber Direction)∗

Young’s modulus (Transverse Direction)∗

Shear modulus
Poisson ratio
Tensile strength (Fiber Direction)
Compressive strength (Fiber Direction)
Tensile and compressive strength (Transverse Direction)
Shear strength

∗ Obtained from rule of mixtures

For the shell, a CFRP layup is used with plies of 0◦ and 90◦ as a starting point.A
summary of the properties obtained can be seen in Tab. 3.

To define the material composed of both the foam and CFRP, present in the wingbox,
the constitutive model explained in 3.2 is used. In TACS, however, a complete and
detailed model of this material is not possible, mainly due to the fact that the core is
fully enclosed by the CFRP, in contrast with the layup in Fig. 6 and some properties
are not exactly representing the real material. These are the major limitations in terms
of material that were encountered and a probable cause for different results between a
real test and a computational analysis. Nonetheless, the analysis is performed and an
optimization can be carried out later, based on this.

Finally, to acknowledge the possible differences between the mass calculated from the
structural model and the real mass of each component, measured by the Tekever’s quality
control team, the error of the model relative to the measured values is given in Tab. 4.

Table 4: Error of model mass relative to measured mass of AR5 wingbox components

Lower Skin Upper Skin Spars Ribs Total
Model to real difference [%] +19.1∗ +26.1∗ -30.9 -50.0 -1.7

∗ Extrapolated value
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It is possible to observe that, the calculated total mass is slightly underestimated in
the model. Firstly, for the skin mass, an estimation was needed to compare the real and
model values since due to the simplifications needed for the wingbox meshing, the skin
panels that are computed are only present between the spars. So, with those panel’s mass,
an extrapolation was made to obtain the estimated weight of the real model skin and it is
shown in Tab. 4. This extrapolation was simply made considering the chordwise position
of the spars and would be accurate if the skin panels were straight and parallel to the
chordwise direction. Since there are a few geometric or material properties’ differences,
some discrepancies are present in the model. For example, spar’s beam profile in the
model is simply rectangular, however, in reality, this is not the case. This means that a
good amount of material is not considered hence, resulting in a underestimation of the
mass in the model. Finally, it is important to note that, overall, the difference is not high
(about 2% error) and does not affect the wing’s rigidity directly.

4.2 Mesh Convergence Study

Some model simplifications and limitations were encountered Nonetheless, the structure
is composed by 6 ribs, 2 spars and the skin panels between these. The simplifications
include the trimming of the ribs’ leading edge at the front spar, the addition of a rear
spar section close to the tip and the skin panels are only present, between the spars (no
leading or trailing edge skin panels).

To decide on the mesh refinement level, a mesh convergence study was carried out with
5 meshes, as summarized in Tab. 5. A representation of mesh 1 can be seen in Fig. 7
were the others are a subdivision of this one, where each element is divided by 4 (except
number 5 due to a memory error that could not be resolved).

Figure 7: Mesh of the AR5 wingbox

Table 5: Convergence study

Mesh
Number

of
elements

Degrees
of

freedom

Max disp.
(Tip Rear

Spar - USkin)
[mm]

Diff.

Stress
(Root Front
Spar - LSkin)

[Pa]

Diff.
RAM
[GB]

Time [s]

#1 2,272 13,476 0.274 - 60,490 - 0.1 30
#2 9,088 54,180 0.273 0.15% 62,450 -3.14% 0.3 238
#3 36,352 217,380 0.273 -0.09% 64,280 -2.85% 1.0 378
#4 145,408 870,948 0.266 2.60% 66,089 -2.74% 4.9 410
#5 284,672 1,706,532 0.266 -0.01% 66,753 -1.00% 8.8 466
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To choose the most efficient mesh to obtain the structural results from and use during
the optimization process, the criteria was: it had to be converged, so a deviation on
the monitored values between meshes shouldn’t be above one percent; and it should be
the one that takes the least time and memory to solve. Looking at the Tab. 5, it was
concluded that mesh 4 met all criteria.

As a final regard, these results were obtained with a computer using a 16-core processor
with 4.5 GHz base frequency and 128 GB of RAM.

4.3 Design Framework Validation

To validate this numerical design framework, experimental data was used from a static
wing bending test provided by Tekever. Weights were added in the lower skin with the
wing upside down and the tip displacement measured.

Analysing with TACS, the maximum deflection obtained was about 0.17 m across the
tip. The original and deformed shapes can be observed in Fig. 8.

Figure 8: Wingbox’s displacement in y under the fixed loads condition

According to the ground test values, the measured displacements, at the tip, for the
leading edge and trailing edge were 0.12 m and 0.17 m, respectively. Firstly, the order of
magnitude of the computational results is pretty similar which is a good indicator that the
model is behaving as expected. Secondly, the fact that there is no significant difference
between the leading and trailing edge from the computational results is due to the spar
section close to the tip not existing in reality, so the trailing edge has lower stiffness and
a higher displacement in the bending test. Finally, the computational results reproduce
overall an higher displacement and this is the expected behaviour since, with the geometry
approximations explained in Sec. 4.2 to produce the mesh, some wing elements were not
added, making the wing less stiff and have a larger deformation. It can be concluded that
the framework produced valid and coherent results.

4.4 Analysis of 4g Maneuvre

Since the maximum allowed loads within the flight envelope of the AR5 is a 4.0g
maneuvre, this is the case studied. For this condition, the most important results to
gather are the failure index and displacement, to make sure it is an acceptable amount.

The failure index results are shown in Fig. 9. They are satisfactory and well bellow
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Figure 9: Wingbox failure index under the 4.0g condition

unity, being the maximum observed of 0.47 meaning that the structure has a safety factor
of 2.1 and a large margin for improvement.

Figure 10: Vertical displacement at the front spar

Regarding the normalized vertical displacement that was plotted across the wingbox
front spar in Fig. 10, the maximum obtained at the tip corresponds to about 8% of half
span (0.264 m). This indicates that the deflection is not too large relative to the wing size
and it is acceptable.

5 WING STRUCTURAL OPTIMIZATION

5.1 Baseline Problem Formulation

Tekever’s goal is to minimize the structural mass and increase the efficiency of the
AR5, meaning that the objective function to this problem is the total wingbox mass.
This includes the ribs, spars and upper and lower skin,

mtotal = mribs +mspars +mupper skin +mlower skin (9)

To control this mass, the variables allowed are some of the parameters that describe the
wingbox design variable (DV) groups. In this case, the ones chosen are the thickness (ti)
of the ith DV group and the orientation (θij) of the jth CFRP ply from the ith DV group.
This last design variable does not have a direct impact on the weight but allows the wing
to change is stiffness to possibly lower the thickness of the CFRP and still withstand the
aerodynamic loads.

Some inequality constraints are set: adjacency constraints, to keep a thickness differ-
ence (|ti − tk|) between a certain ith DV group and its adjacent groups (kth DV groups)
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under a certain maximum; failure constraints, in this case, the failure index given in Sec.
3.2 by the Tsai-Wu criterion, to ensure that the wing withstands the loads. Since it is
not possible to obtain a gradient of a function that retrieves the maximum failure indexes
across all points in which it is calculated, the Kreisselmeier-Steinhauser (KS) aggregation
function [24] is used to convert the discrete nature of the maximum failure index function
into a continuous and smooth function, allowing for a gradient-based optimizer to use it,

KS =
1

ρ
ln(

ng∑

l=1

exp(ρgl)) , (10)

where ρ is a tolerance/weight parameter, ng the number of failure constraints and gl the
lth failure constraint function.

With this in mind, the baseline optimization problem for this wingbox structure can
be formulated as

minimize mtotal

with respect to ti
θij

subject to KS ≤ 1
|ti − tk| ≤ ∆max

. (11)

According to the manufacturing requirements and methods employed, the boundaries
for each DV group is defined as: minimum of 1.0 mm for both skins and spars and 0.25 mm
for the spars; to give more freedom to the optimizer to possibly reinforce certain areas
of the wingbox, a maximum of 100 mm was set. For the adjacency constraint, ∆max was
defined as 5 mm.

The optimization algorithm used was the sequential least squares programming algo-
rithm (SLSQP), briefly presented in Sec. 3.3. Convergence is assumed for the optimal
solution when the difference between solutions is smaller than 10−6. To ensure that the
optimization process stops if no minimum is found and it does not run indefinitely, a
maximum of 500 iterations are allowed.

5.2 Baseline Optimization

Fig. 11 shows the history of the objective and constraints in which the objective
function exhibits a converging behaviour, reinforcing the fact that the optimisation found
an optimal solution.

Another interesting aspect to note in Fig. 11 is the failure constraint has visible upper
spikes that match with the mass lowering spikes, which happens when the optimiser tries
to lower the mass, violating the failure constraint.

Fig. 12 compares the initial case with the found optimised solution having the different
wingbox components’ thicknesses. Across the entire wingbox, the thickness is lower in
the optimal solution and, as expected, the higher and lower values are located near root
and tip of the wing, respectively.

Regarding the failure index shown in Fig. 13, the optimised wingbox has more regions
with a higher failure index, due to the overall decrease in the thickness and the wing being
less oversized.
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Figure 11: Objective function and failure constraint value across all optimization itera-
tions

Figure 12: Comparison between initial component thicknesses (left) and optimised solu-
tion found (right)

With the thinning of the wingbox components and without buckling constraints present
in this optimization, it is expected that the wing displacement increases. In fact, the
optimized wingbox, for this 4g load condition, presents a maximum displacement of 0.61 m
and its deformation is shown in Fig. 14.

5.3 Baseline Optimization with Displacement Constraint

To prevent such large displacement, another KS function, aggregating all displacements
from a specific wingbox region is used, in order to more easily control the maximum dis-
placement of that specific component. Similarly to the failure function, this displacement
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Figure 13: Comparison between initial component thicknesses (left) and optimised solu-
tion found (right)

constraint requires a KS function since the maximum function can not be differentiated.
In the present case, the tip of the wing is the most problematic location so the constraining
KS function uses the displacements in that region.

Having performed the optimization adding the inequality constraint, KS(disp) < 0.4 m,
a similar plot to Fig. 11 was obtained, confirming convergence of the solution and con-
straints. By plotting the front spar normalized displacements against the spanwise posi-
tion (Fig. 14) it is possible to assess that the constraint was successful at lowering the
maximum allowed displacement.

Figure 14: Front spar y deflection under the 4g condition

To ensure this new constraint was respected, it is interesting to see that, comparing
the thickness of the components from previous optimal solution and the newer one (Fig.
12), the thickness increased, particularly near the root and for both the upper and lower
skins. In contrast, there is a reduction in thickness near the root for both spars. This
indicates that the root panels of the skin are more effective at increasing the wing bending
stiffness and reducing the maximum displacement and it is possible to mitigate the weight
gain by thinning the spars. Although making the spars thinner supposedly decreases their
rigidity, the gain from the skin panels is greater and the overall weight is reduced this
way.
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From Fig. 13 and the information in Tab. 6, it is possible to conclude that the failure
inequality constraint remained active, implying that the optimized structure under the 4g
condition corresponds to the thinnest possible solution that still withstands the critical
aerodynamic loads.

Using the optimal solution obtained from case 1 as the optimization starting point
leads to a new solution, which corresponds to a different local minimum.

It is relevant to compare the results against the AR5 baseline analysis quantitatively,
to better understand the enhancements these optimizations provide to the AR5 wing. In
Tab. 6 is a summary of these results.

Table 6: Summary of relevant optimization results

Mass difference Maximum disp. [m] Maximum failure index
Baseline 0% 0.273 0.47
Optimal - No disp. constraint −55.6% 0.613 0.79
Optimal - With disp. constraint −52.4% 0.473 0.74
Optimal - Different baseline −54.4% 0.471 0.58

It is possible to conclude that these optimizations provide a mass reduction larger
than 50% of the original baseline. As expected, with the displacement constraint, the
reduction is smaller since, to increase the rigidity of the wing to respect the constraint,
thicker sections were necessary. The third optimization case revealed to be important
since by having the starting point as the optimal solution from the first optimization
case, a better result could be found keeping the displacement constraint. The maximum
displacement for the third solution was about 12% of the wing’s half span, similar to the
results in Fig. 14 for the second case, which is considered acceptable. Finally, regarding
the possible wingbox failure, a safety factor of 1.5 was used so that all optimizations would
have a maximum failure index of about 1

1.5
= 0.67. The third optimization is well within

the limit having a maximum failure index of 0.58 and a 1.78 safety factor.
A full description of the final values of the design variables for each wingbox DV group

is present in Tab. 7 for the three optimization cases (Case 1/Case 2/Case 3). The
0◦ ply orientation is defined by direction 1 of the local reference axis for each wingbox
component: for both skins, spars and ribs, it corresponds to the z, y and x directions in
Fig. 7, respectively.

It can be concluded that, across the span, the thickness decreases except for the rear
spar although it is not too much (about 0.1 mm more than the previous panel). Fur-
thermore, although the local minima produced a similar displacement response, it has a
very distinct composition in terms of ply orientation, allowing the wingbox to satisfy the
constraints with a higher safety factor (lower failure index).

Regarding the ribs, these are the parts that suffer the most thickness changes since their
baseline value is 6 mm and, across all optimizations, the value is reduced to the minimum
1 mm. This might indicate that the baseline value is greatly oversized. Although it might
be true, it cannot be concluded since no buckling constraints were added and the wingbox
ribs main function is to increase the buckling strength.

One final note about the plies orientation and a main concern and physical constraint,
is that if this wing was to be manufactured, since the angles of the different DV groups
have large disparities between them, it would not be possible to manufacture it with
unidirectional fiber cloths. Using them, would lead to non continuity of the fibers along
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Table 7: Design variables’ values of the optimal solutions

Upper Skin 1 (Root) 2 3 4 5 6 7 (Tip)
t [mm] 2.8/3.3/3.0 1.4/1.4/1.3 1.0/1.2/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0
θ1 [◦] -1.1/-7.8/-3.6 -1.4/-5.2/-2.6 -4.8/-2.4/-2.4 -20.1/-1.9/-3.6 3.0/-2.7/-1.9 -1.7/-1.7/-0.1 9.5/7.9/6.0
θ2 [◦] 90.0/19.6/90.0 90.0/27.8/90.0 32.8/90.0/-2.5 24.3/90.0/0.1 87.8/90.0/-0.6 88.1/90.0/90.0 87.9/90.0/90.0

Lower Skin 1 (Root) 2 3 4 5 6 7 (Tip)
t [mm] 1.7/2.2/2.1 1.0/1.2/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0
θ1 [◦] -1.8/-5.7/-5.3 -14.4/3.2/-16.3 -4.1/-8.5/10.3 7.9/1.3/3.5 16.6/0.7/6.3 43.2/30.5/-21.4 52.5/58.4/62.8
θ2 [◦] 56.8/14.0/18.0 22.0/90.0/19.6 20.8/13.8/-4.6 84.9/89.7/-0.3 89.9/77.4/-4.3 90.0/90.0/19.8 52.5/58.3/63.2

Ribs 1 (Closer to root) 2 3 4 5 6 (Closer to tip)
t [mm] 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0
θ1 [◦] -17.3/-55.6/-77.0 -20.2/3.4/13.8 -20.7/6.6/7.2 -0.5/0.0/-0.2 -5.5/-4.2/-26.6 4.4/-1.6/-24.0
θ2 [◦] 36.4/75.5/45.9 16.3/90.0/10.1 80.1/89.4/82.5 89.8/90.0/90.0 88.4/88.9/86.1 90.0/89.4/82.9

Front Spar 1 (Root) 2 3 4 5 6 7 8 (Tip)
t [mm] 5.1/1.4/3.0 0.4/0.3/0.3 0.3/0.3/0.3 0.3/0.3/0.3 0.3/0.3/0.3 0.3/0.3/0.3 0.3/0.3/0.3 0.3/0.3/0.3
θ1 [◦] 20.8/-11.1/1.7 20.7/-61.1/-30.6 10.5/-23.8/-70.4 -40.1/-3.1/-68.9 9.8/-1.8/0.4 -0.5/-2.5/-37.2 -0.3/-6.3/-62.3 0.8/1.4/1.7
θ2 [◦] 90.0/86.5/90.0 90.0/5.3/27.3 90.0/10.8/5.7 90.0/90.0/7.9 61.3/68.4/73.1 77.1/80.9/78.4 74.8/79.8/72.6 83.0/81.1/78.4

Rear Spar 1 (Root) 2 3 4 (Tip)
t [mm] 3.9/1.9/3.3 0.3/0.3/0.3 0.3/0.3/0.3 0.3/0.3/0.4
θ1 [◦] -26.7/-28.6/-11.3 5.8/-26.9/-61.0 -9.6/-72.8/-69.9 -19.1/-18.2/-11.7
θ2 [◦] 72.9/35.6/45.0 90.0/40.7/40.9 43.3/58.4/75.5 89.3/88.2/86.3

the span which is extremely non desirable, as they create weak points. This means that,
alternative methods of manufacturing would be needed or the addition of constraints to
make sure the ply angles would be the same across the groups from the different wingbox
components.

6 CONCLUSIONS

A alternative wingbox structural solution for the AR5 wing was obtained, leading to
an expected reduction of weight of about 50% while maintaining its structural rigidity,
with a 1.5 safety factor. It is also important to note that, with further refinement of the
computational model, both geometrically, with a more detailed mesh, and in terms of
material characterization, with closer to reality mechanical properties, this methodology
and high-fidelity framework proved to be a powerful tool to create optimal structural
solutions.

One of the major drawbacks from the results presented in this work is the fact that it
is not feasible to manufacture the optimal wingbox by traditional means, such as manual
layup, since there is a large disparities between ply angles of adjacent DV groups. However,
to manufacture this optimal solution, tow-steering technology could be used. The other
major limitation from the obtained results is the fact that no buckling constraints were
included.

As future work, it is suggested the implementation in this framework of constraints
that impose continuity of the DV groups’ ply angles across the wingbox components
(each skin and spar), as well as a new or improved material constitutive law to substitute
the smeared approach, that would allow more control of the layup as well as the use of
buckling constraints.
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Abstract. The UAV market is currently very competitive, with the frequent launch of new
products and a wide range of solutions already available, forcing manufacturers to explore
the design space faster and more efficiently than in the past. A cost effective approach
is to develop growth versions, improving an existing product with new technologies and
design tools. Some of these tools include RANS based high fidelity computational fluid
dynamics methods and discrete adjoint gradient-based optimization, which will be used in
this work on a numerical design framework to explore the aerodynamic shape optimization
of a wing, as part of the development of a growth version of a MAME UAV for a leading
Portuguese manufacturer. A comprehensive aerodynamic analysis of the current UAV
wing will be performed, followed by an optimization procedure to minimize drag subject
to a prescribed lift coefficient constraint. To that end, two different starting geometries
will be considered and parameterized with common design variables, including twist and
chord distribution, sweep and airfoil shape. New optimized geometries for different sets
of design variables will be obtained with a significant drag coefficient reduction from the
starting geometry. The optimized geometries will approach an elliptical lift distribution,
although not exactly considering the trade-offs needed between skin friction and induced
drag. Despite the fact that the results obtained here are not considered the final design, as
more shape parametrizations and design variables are yet to be explored, they provided a
good insight on how the different parametrizations are handled by the design optimization
framework and considerations that should be taken.

Keywords: Optimization, adjoint method, aircraft design, computational fluid dynam-
ics, free-form deformation, geometric parametrization
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1 INTRODUCTION

UAVs have been around for more than a century [1]. Initially, developments went
hand in hand with the recent aviation industry, following a technology-driven approach
which allowed a fast evolution, benefiting form the emerging technologies in all disciplines
(aerodynamics, structures, flight mechanics, etc.) [2].

As speeds reached by manned aircraft started to increase significantly during the 60’s
and the 70’s, more focus started to be given to aerodynamic design, starting with airfoil
design and quickly evolving to wing design [3]. At this time, CFD was used primarily to
obtain a better mission performance by increasing range and speed. However, with the
oil crisis in the 70’s, this old approach to aircraft design started to shift into a customer
driven approach which is still maintained nowadays, meaning that aircraft design started
to be a balance between available technology and the benefits it would bring to the
customer, taking into account the required constraints [4]. Satisfying the customer needs
also implied a reduction in development time so that the manufacturer could respond in
time to the current market needs.

During this shift, CFD underwent very significant advances, with the solution of the
viscous flow around a 3D geometry of the whole aircraft using RANS equations and
turbulent models eventually becoming standard [3]. With the evolution in computational
power and code scalability, it became feasible to use such models on the conceptual design
phase [5–7]. CFD brought several advantages to the design process, making it much more
efficient. However the project of a new vehicle can still take years, with several iterations
between the different disciplines, such as structures, aerodynamics and propulsion, often
on an intuition and trial and error basis to assess different possible vehicle shapes [3].

Nowadays, the UAV market is experiencing fast growth and dinamic developments,
which naturally attracts investors attention. Notably, the industry received a total in-
vestment of US$6.96 billion last year [8]. This growing market has also become highly
competitive, with the influx of new market players resulting from the substantial in-
vestments, companies seeking external funding must differentiate themselves by offering
innovative and unique products.

Figure 1: Tekever AR5 UAV. Source: Tekever.

In this context, this work explores automatic aerodynamic shape optimization us-
ing high fidelity methods, in particular the MACH-Aero framework, developed by the
MDOLab [9]. The focus is on the development of a growth version of the Tekever AR5
UAV, shown in Figure 1. Several different parametrizations will be tested and associated
with common design variables which, together with a prescribed lift coefficient constraint

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

261
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and a drag coefficient reduction as an objective, will form the optimization problem in
study. For that, the aerodynamic analysis tools associated with the framework are used
first to perform an analysis of the current AR5 wing. After that, optimization prob-
lems with different sets of design variables will be set up and the results analyzed and
commented.

In the future, this project will evolve to a multidisciplinary optimization (MDO) frame-
work, where the aerodynamic and structural optimization will be performed together.

2 FRAMEWORK OVERVIEW

Figure 2: MACH-Aero optimization framework.

Figure 2 schematizes the process followed to optimize the aerodynamic shape of a wing.
The blue shaded boxes represent the modules developed by the MDOLab and the gray
box encompasses the MACH-Aero framework. The white text represents parameters that
are automatically updated by the MACH-Aero framework, and the black text represents
parameters that require user input.

The MACH-Framework is composed by the following modules: ADFlow, a structured
multi-block 3D CFD solver [10] which also solves the adjoint method to compute the
derivatives [11], pyGeo a geometry manipulation tool that was specifically built for multi-
disciplinary optimization applications and allows the manipulation, parametrization and
constraint handling of the geometric shape [12] and pyOptSparse, which handles the con-
strained nonlinear optimization problem [13].

2.1 Meshing

The first step is to create a baseline geometry which will serve as a starting point for the
optimizer. Considering that this geometry will be an input to the MACH-Aero framework,
two main options are available for generating the generating the geometry: Using pyGeo,
that allows to create simple geometries by lofting surfaces between a provided set of
airfoils in a code-based way, or using a typical CAD (Computer Aided Design) or geometry
generation software, like OpenVSP [14], which was the main tool used in this work to
obtain the starting point for the optimizer. The geometry should then be exported to
a neutral CAD format that is accepted by the mesh generator. IGES (International
Graphics Exchange Standards) or STEP (Standard for the Exchange of Product Data)
are two formats widely accepted by most meshing software.
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(a) Mesh blocks depicted with different colors. (b) Volume mesh obtained using py-
Hyp.

Figure 3: Used mesh for the Tekever AR5 wing.

From the geometry CAD file, a surface mesh must be obtained. For that, it is possible
to choose from a variety of different software. However, the chosen grid generator should
be able to generate a multi-block and/or overset 2D mesh, as those are the grid types
accepted by the flow solver, and output the resulting grid to a CGNS (CFD General
Notation System) file, in ADF [15] or HDF5 format, supported in more recent versions of
CGNS [16].

The most popular options are ICEM CFD® and Pointwise®. Some open source so-
lutions for mesh generation, such as GMSH [17] are also widely available. However, the
first requirement limits their usage in this work. Figure 3a shows an example of a surface
mesh with multiple blocks used in this work.

Having a surface mesh in the appropriate format, an hyperbolic volume mesh is then
extruded using pyHyp, an hyperbolic mesh generator that also automatically applies the
necessary boundary conditions for a wing if desired [18]. Figure 3b shows a volume mesh
obtained with pyGeo, as well as the respective surface mesh. To generate a volume mesh
from a surface mesh, pyHyp requires the user to provide a few parameters: the first layer
height, the total height of the volume mesh and the number of layers to extrude. Both
the surface and the volume mesh should, naturally, be sufficiently refined, and so, grid
independence studies must be carried out before starting the aerodynamic analysis and
optimization procedure.

2.2 Flow model

To compute the flow, ADFlow includes both inviscid models (Euler) and viscous mod-
els, which solve the RANS equations with different turbulence models available, including
Spalart-Allmaras, Wilcox k-ω, k-τ , Menter SST k-ω and v2-f In this work, it is intended
to optimize the wing for viscous flow, so RANS models will be used.

Regarding the turbulence model, comparisons for external flows around an Onera M6
wing concluded that the Spalart-Allmaras and SST k-ω turbulence models gave the closest
results to the experimental data [19] and using the DPW7 CRM configuration shown that
both the k-ω and Spalart-Allmaras models yield great results [20]. The main drawback
of the Spalart-Allmaras model is for separated flows, performing well for external flows
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otherwise [21].
The flow solution using ADFlow with Spalart-Allmaras turbulence model was also com-

pared with two other solvers and to experimental data for the CRM wing, and successful
validation of the ADFlow code was achieved [22].

It is important to note that only the Spalart-Allmaras turbulence model has been
differentiated in the ADFlow code. This fact, together with previous observations of
the good results obtained with Spalart-Allmaras for external flow computations makes
it the most suited for the optimization of a wing. Spalart-Allmaras is a linear eddy
viscosity model, and thus, uses Boussinesq assumption for the constitutive relation [23].
Furthermore, it is considered a low Reynolds number, and in [24] it was concluded that
an y+ value of approximately 1 was enough to obtain numerical uncertainties of friction
resistance coefficients smaller than 1%.

The flow conditions are defined and passed to ADFlow by instantiating the AeroProb-
lem class from baseclasses. Multiple formulations could be used, but for this work, the
flow condition will be defined using the angle of attack, α, flight altitude, h, and the
Mach number, Ma of the undisturbed flow. From these parameters the complete flow
state information is obtained from the 1976 U.S. Standard Atmosphere [25]. Further-
more, wing reference area and chord should be passed as inputs to the AeroProblem for
the computation of the aerodynamic coefficients.

2.3 Geometric parameterization

Using the MACH-Aero framework, there are two main options for geometry parametriza-
tion: CAD-based and free-form deformation based, which uses a box that completely
embeds the surface mesh and that will be referred in this work simply as the FFD box.
The surface mesh nodes are then mapped to the FFD box with an R3 → R3 mapping,
determined by performing a Newton search. After that, surface mesh nodes can be de-
formed by performing deformations on the FFD box nodes, given their mapping. The
surface mesh deformations are then used to perturb the volume mesh using an hybrid
algebraic-linear-elasticity mesh perturbation scheme [12] due to its resulting high grid
quality and low computational effort. Figure 4 shows the result of using such scheme to
deform the surface mesh of a wing, where it can be seen that the deformation of the FFD
box deformed the embedded wing.

Figure 4: FFD box used to deform a wing surface mesh.

CAD-based approaches parameterize the geometry directly and so the design variables
for the optimizer are directly related to parametric CAD variables, which also makes it
easier to use the optimized geometry. However, the FFD approach is generally easier to
setup and use with an already existing geometry and has freedom to parametrize multiple
design variables easily, so it was the chosen approach.
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(a) Airfoil shape. (b) Twist distribution. (c) Sweep distribution.

(d) Dihedral distribution.
(e) Chord distribution (refer-
ence axis at 25%).

(f) Chord distribution (refer-
ence axis at 50%).

Figure 5: Deformations to the FFD box associated with common design variables.

The nodes of the FFD box may be displaced individually in any spatial direction, and
will, in that case, be known as local design variables. However, pyGeo also allows to
create relations between node displacements in such a way that they are all affected by a
smaller set of design variables, allowing the geometry parameterization with global design
variables. This second approach is useful as the reduced number of design variables
saves computational resources during the optimization whilst allowing for the creation
of functions that can represent more intuitive deformations such as taper or twist. An
example of a local design variable with vertical displacements is given in Figure 5a where
the parameterization was set up such that all sections of the FFD box would mimic the
same deformations.

To create a global design variable using pyGeo, in addition to the FFD box, an axis is
necessary. The axis can be created by specifying its direction and relative position in the
FFD box using the fraction of two specified directions. For a typical wing optimization
problem, the user should specify the direction that follows the wingspan, and the fraction
of the vertical and streamwise position of the axis, which will be, for most practical cases,
0.5 and 0.25 respectively, representing the quarter chord of the wing. It is important to
note that the wing should be centered within the FFD box. The reference axis will be
used to project all the FFD nodes into it using an user defined direction for the projection.
The points will then become rigidly linked to the refence axis, and so, any deformation
on the FFD axis will have an effect on several FFD points at once [26]. A deformation
on the FFD axis may be of three types: displacement, rotation and scalling.

The first type of deformation is the displacement of the points to a new location, which
may be used to create dihedral or sweep, for example, as Figures 5d and 5c show. pyGeo
also allows rotations and scaling in any one of the three directions x, y and z. The most
obvious application of a reference axis rotation would be to create a twist distribution,
depicted in Figure 5b, but it is also useful to keep the airfoil sections perpendicular to
the reference axis and, thus, effectively keeping the same airfoil by applying rotations to
the reference axis points across the axis of rotation. This effect can be clearly visible
in Figures 5d and 5c The scaling function can scale the FFD box points in a specified
direction. Figures 5e and 5f show an example of scaling functions being applied to create
a chord distribution. Besides the obvious scaling in the streamwise direction, a scaling
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in the vertical direction was also applied to maintain the airfoil thickness to chord ratio
constant. While Figure 5e shows a chord distribution for a reference axis at 25% of the
FFD box, Figure 5f shows a chord distribution for a reference axis at 50%.

The design variables are not necessarily defined by a single number and can have
as many degrees of freedom as the number of points in the reference axis. It is even
possible to parametrize distributions of the variables with smaller sets of variables: A
linear distribution of the chord or twist can be parametrized with only the slope as the
design variable.

2.4 Constraints

pyGeo can also be used to set geometric constraints. It is possible to add different
types of constraints, being the most common ones the minimum thickness constraints,
to ensure that there is enough room for structural components; the minimum volume
constraints, to guarantee enough internal volume to carry a specified amount of fuel; the
curvature constraints, typically used to ensure manufacturability; and LeTe constraints
to avoid shearing twist at the leading and trailing edge when local design variables are
present.

Figure 6: Minimum thickness and LeTe constraints defined using pyGeo.

Minimum thickness and volume constraints may be specified with either an absolute
value or a relative value in relation to the baseline design. Figure 6 shows an example of
the used minimum thickness (represented in black) and LeTe (shown in red) constraints.
They are only enforced at certain user-specified locations and are independent of the FFD
nodes. When the geometry is deformed, the change of location of those constraints is also
handled automatically by pyGeo, which also takes care of the needed operations to use
them as constraints in the optimization problem.

In this work, only minimum thickness constraints and LeTe constraints will be used.
Minimum volume constraints are not required, considering that the UAV in study does
not store the fuel in its wings.

2.5 Optimization problem

With both constraints and design variables defined in pyGeo, they need to be passed
to pyOptSparse for the optimization process. Variables from the aero problem, defined
using the baseClasses can also be passed as optimization variables and a particularly
important example of that is the angle of attack. When adding the angle of attack as a
design variable, attention must be paid to its relation with twist, given that a geometric
rotation of the root wing section has an equivalent effect to the angle of attack. For this
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reason, twist at the root is usually kept fixed and not added as a design variable. This
also ensures that the shape of the wing mounted at the fuselage is conserved, and thus,
the same principle may be applied to the other design variables.

Non-geometric constraints can also be created by user defined functions. The most
important non-geometric constraint when optimizing for cruise flight is the lift constraint,
which should equal a prescribed lift coefficient at cruise condition and ensure that it
is possible to sustain flight. In a similar way, it is possible to define the function or
combination of functions to be used as the optimization objective. In this case, the
optimization objective will be the drag coefficient minimization.

With the design variables, usually defined by pyGeo parametrizations, constraints from
both the geometry and the AeroProblem and the objective function passed to the opti-
mization problem, the optimization set-up is effectively complete and ready to run. Given
that pyOptSparse sets up the optimization in a problem oriented manner, a problem state-
ment in the standard form is easily translated to the optimization framework.

When running, the CFD solver will compute the solution for the baseline geometry
and the adjoints, which will then be fed back to the optimizer. The optimizer will use
this information to update the value of every design variable and fed them back to pyGeo,
which will deform the volume mesh as described before. The new volume mesh will be
solved by ADFlow again, and when performing multiple function evaluations in the same
optimization iteration, the solver will take the final solution of the last call as a starting
point, speeding up iterations. This process will be repeated until convergence is achieved.

pyOptSparse can use different optimizers, including both gradient based and gradient-
free ones. Both gradient-based and gradient-free optimizers have been used in the past for
aerodynamic shape optimization. Comparative studies of both methods were performed
in [27] and [28], with similar conclusions between them: Both can converge to a solution,
but gradient-free methods are considerably more computationally expensive, which the
difference increasing dramatically as the number of design variables increases. Examples
of gradient-based have been performed where both refinement and exploratory studies
were done using both inviscid and viscous models for the optimization of a wing using
the MACH-Framework and the SNOPT optimizer and where a more complex problem of
multi-component aerodynamic optimization for a wing propeller coupling was also solved
using gradient-based methods within the OpenMDAO/MPhys framework [29, 30].

Although in this work a smaller set of design variables will be used initially, the number
will be increased later stages, and so, the gradient-based methods were the best option.
Furthermore, the functions to be used are smooth and C1-continuous, as the previously
presented papers have shown.

The SLSQP (Sequential Least Squares Quadratic Programming) was used due to its
open source nature and robustness. It has been used in the past for aerodynamic shape
optimization [31, 32]. The SLSQP algorithm solves constrained nonlinear optimization
problems, which corresponds to the nature of the problem being studied in this work,
using the Han-Powell quasi-Newton method with BFGS update of the B-matrix and an
L1-test function in the step length algorithm [33].

To compute the gradients needed for the optimization algorithm, given that in aerody-
namic shape optimization problems the outputs are often reduced to the drag coefficient
but multiple design variables are used as inputs, the adjoint method is the most suit-
able option for aerodynamic shape optimization and is the one used in the MACH-Aero
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framework.

3 INITIAL GEOMETRY ANALYSIS

3.1 Operating conditions

As stated in Section 1, the Tekever AR5 wing is to be optimized. For this reason, the
first step is to assess the performance of the current. Its cruise conditions are summarized
in Table 1.

Table 1: Performance parameters of Tekever AR5 [34].

Cruise speed U∞ 100km/h
Cruise altitude h 1000ft
Maximum Take-off Weight MTOW 180kg
Endurance E 12h

The analysis should be performed for a specific angle of attack, which can be determined
by optimization with a single design variable and a prescribed lift coefficient as constraint
or with a secant method provided by ADFlow to find the initial angle of attack for a
certain lift coefficient.

Tekever provided the wing lift coefficient CLwing
= 0.8932, considering the projected

area of the AR5 wing, Swing = 2.1691m2, and the cruise conditions presented in Table 1.
Despite being automatically calculated by the AeroProblem class, it is important to

estimate the Reynolds number to understand what kind of simulation will be performed
and choose the models adequately. Reynolds number is given by

Re =
ρU∞cMAC

µ
, (1)

where cMAC is the mean aerodynamic chord, U∞ is the free-stream velocity, defined by the
cruise speed (Table 1) and air density, ρ and dynamic viscosity, µ, which can be computed
for the cruise altitude using the ISA Standard atmosphere. Using all the described values,
it is possible to obtain a Reynolds number of 1.1e6. This is a moderate Reynolds number,
and it indicates that turbulent flow will be dominant. The effects of viscous forces will be
much smaller than the ones caused by pressure forces, but they should not be ignored.

Mach number is another dimensionless parameter that should be calculated, not only
because it provides an insight into the kind of flow to be expected, but also because it is
an input for the AeroProblem. It is given by

M =
U∞√
γRT

, (2)

where γ is the adiabatic constant, R is the gas constant and T is the temperature, calcu-
lated also with the ISA Standard atmosphere for the cruise altitude, and with a value of
286.169K. This results in a Mach number of 0.08164, which is very low, so no transonic
effects are to be expected.

Table 2 summarizes the main parameters used for the CFD simulation. Other param-
eters were kept at their default values [35].
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Table 2: CFD solver parameters used for the simulation.

Discretization Central plus scalar dissipation
Equation type RANS
Equation mode Steady
Turbulence model Spalart-Allmaras
Turbulence order First order

For the stopping criteria, either a maximum of 10000 iterations or a convergence of the
residuals L2-norm to 1e−6 in relation to the residuals obtained in the first iteration will
be used.

3.2 Geometry

Figure 7: Planform of the AR5 wing.

The planform of the current AR5 wing is shown in Figure 7 and the main design vari-
ables associated are presented in Table 3. From distance 2 onward, the wing is composed
of a winglet which will not be described here, as it will not be considered in the opti-
mization phase of this work, but it effectively increases the real wingspan whilst keeping
the projected wingspan constant and reduces the induced drag, as it will also be shown
later. Table 3 also includes the surface area, as well as the projected area of this geometry,
which will be kept constant for the initial geometries generated for the optimization. A
custom airfoil is used.

Table 3: Some geometric parameters of Tekever AR5 wing.

Wingspan b 7.565 m
Projected wingspan bproj 7.246 m
Root chord croot 0.70 m
Projected area Sproj 2.169 m2

3.3 Grid convergence study

A grid convergence study was performed, with an approximate uniform refinement
ratio of 1.15 between grids by simulating the Tekever AR5 wing at an angle of attack
of 1.5◦. Sufficient grid refinement will also be important for optimization, namely chord
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distribution optimization, during which the mesh in the streamwise direction will get
compressed or enlarged together with the geometry, effectively changing its refinement
level. This effect will be particularly relevant at the wingtip, where induced drag is
expected to be captured.

For those reasons, the used grids all have a greater element clustering near the leading
and trailing edge in the streamwise direction, as well as near the tip in the spanwise
direction. Since no wall functions were used, the Spalart-Allmaras turbulence model
requires an y+ ≈ 1, which was satisfied.

Figure 8 shows the evolution of the drag coefficient, as well as the required computa-
tional wall time for the different meshes tested. It is possible to observe that the drag
coefficient is converging as the grids are refined. The increase in the wall time needed
is also noticeable, with the more refined grid taking more than three hours to converge
running on two cores of a CPU with a clock speed of 4.5GHz. A linear increase in the
needed RAM memory is verified, at around 2GB per 100, 000 elements. Based on this
data, it can be concluded that the mesh with about 1.1 million elements is sufficiently
refined, as the relative drag coefficient error to the previous iteration is only 0.36% and
the computational time needed is less than half of the more refined grid.

Figure 8: Grid convergence study.

3.4 Domain size study

The influence of the domain size in the solution was also evaluated. For this, several
grids with different extrusion distances from the surface normal were tested. However,
a coarser surface mesh was used in order to save computational resources, which will
increase as the extrusion distance increases. The volume mesh was extruded from the
surface mesh using pyHyp, which uses a geometric progression to calculate the marching
distance of each new layer of cells, given by

∆d1(1− qnk−1)− d(1− q) = 0, (3)

in which ∆d1 corresponds to the marching distance of the first layer from the surface, q
is the geometric progression ratio, nk is the number of elements in the off-wall direction

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

270
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(a) α = 2.2◦. (b) α = 20◦.

Figure 9: Pressure distribution and streamlines for different angles of attack.

and d is the total marching distance. Here, the influence of d is studied. However,
the geometric progression ratio needs to be kept constant to ensure that the results are
not affected by the mesh refinement in the off-wall direction, so nk is also be changed,
according to Equation 3 and q will be kept at around 1.187. The domains are measured
in terms of mean aerodynamic chords, and the results are presented in Table 4.

Table 4: Domain size study results

Chords Nr. elements Error CL (%) Error CD (%)

5 467,200 - -
10 496,400 0.23 8.35
15 511,000 1.14 1.89
20 525,600 0.02 0.93
25 540,200 0.10 0.73

It can be observed that the domain size has a bigger impact on the drag than on
the lift coefficient. It is also possible to conclude that for 20 chords, the errors for both
coefficients are under 1% which was considered enough for this work. Thus, this was the
domain size used to perform the aerodynamic analysis.

3.5 Cruise performance

The pressure distribution over the surface can be observed in Figure 9a for an angle
of attack of 2.3◦, which was found to be the one that produced the prescribed wing lift
coefficient for cruise conditions. It is possible to observe that on the upper surface, pressure
is higher closer to the leading edge and in the winglet region and in this condition, the flow
remains attached to the wing. Figure 9b, on the other hand, shows a flow distribution for
a more extreme angle of attack, where it is clearly possible to see the flow separation on
the suction side of the wing. In both figures it is possible to see the trailing edge vortex
forming.
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(a) Lift coefficient curve. (b) Drag polar.

Figure 10: Wing performance for angles of attack between 0◦ and 20◦.

To observe the behavior of the wing with angle of attack, a study was performed
and the results presented in Figure 10a. It is possible to see that CL and CD increase
continuously with angle of attack until around α = 14◦ and the variation is linear until
around α = 8◦, after which boundary layer separation starts to occur. In the linear
region, CLα = 0.075/◦. A drag polar is also presented in Figure 10b, were efficiency can
be analyzed. In this case, it would be higher for the smallest angle in the tested range,
of 0 deg, and the maximum would possibly be for negative angles of attack, outside the
tested range, decreasing with increasingly higher angles of attack. The orange square
represents the trim operating condition, and it is possible to see that the wing is not
operating at its maximum efficiency.

4 WING OPTIMIZATION

4.1 Optimization problem formulation

The formulation of the full optimization problem in standard form and the bounds
considered for each design variable are presented in Table 5.

Table 5: Formulation of the full optimization problem in standard form.

Quantity Lower bound Upper bound Units

minimize CD 1 - - -
w.r.t. α 1 0 15 ◦

γ (twist) 7 −15 15 ◦

c (chord) 8 15 150 %
Λ (sweep) 1 0 10 ◦

airfoil shape 24 −0.05 0.05 m
subject to CLcruise

= CLprescribed
1 0.8932 0.8932 -

Sproj = Sprescribed 1 2.1691 2.1691 m2

t (thickness constraint) 24 90 200 %

An FFD box with dimensions 12× 8× 2 (streamwise, spanwise and vertical direction,
respectively) and a reference axis at 25% of the chord will be used. The parametrizations
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for the different variables will be done as discussed in Section 2.3: Twist will be associated
with a rotation of each section around the reference axis in the spanwise direction, chord
will be parametrized with a scale relative to its initial value in the streamwise and vertical
direction (with the same value for both) in relation to its initial value, sweep will be
parametrized with a displacement in the streamwise direction of every reference axis point
in a linear way followed by a rotation of each control point around the vertical direction
and airfoil shape will be parametrized with displacements of the local FFD points in the
vertical direction. As discussed before, root twist will be kept at 0◦ so it will only have
seven design variables.

Most limits were defined in such a way that the optimizer would have enough freedom.
However, in some cases, like the airfoil shape and the chord lower bound tighter limits had
to be imposed to avoid further problems in the volume mesh perturbation resulting in an
unusable grid. The thickness constraints were set to span the whole wing and enforced at
four spanwise points and six streamwise points. They are important mostly for the airfoil
shape optimization and ideally, the wingbox for the required wing structure would be used
to set them. As this work deals with the uncoupled aerodynamic shape optimization, it
was arbitrated that, at each point, the thickness could not be less than 90% of the initial
value.

Regarding the convergence criteria, a successful optimization is finished if either the
convergence accuracy is smaller than 1e−6 or the number of iterations reaches 500. It
was verified that on successful optimizations the desired convergence accuracy criterion
was met well before the maximum number of iterations.

4.2 Initial geometry characterization

The optimization procedure requires the definition of an initial geometry. That could
be the Tekever AR5 current wing, however, given the parametrization method chosen
(using FFD volumes), it would be hard to accurately define the design variables in such
a way that they would match meaningful wing design parameters. For this reason, two
simpler initial geometries were created: one, shown in Figure 11a which is a planification
of the Tekever AR5 wing, which had the winglet removed and was then subjected to three
main modifications: wingspan extension to match the projected wingspan of the original
wing; a change in the trailing edge sweep of the outer section in order to keep the same
projected area as the original wing; a removal of the existing twist; the other, shown in
Figure 11b is a simple rectangular wing with the same projected wingspan and area as the
Tekever AR5 wing and where the original airfoil was replaced with a symmetric NACA
4-series airfoil with the same thickness-to-chord ratio as the original wing. Figure 11 also
shows the control points used with each geometry (blue circles) and the reference axis
(shown in red).

The rectangular wing utilized a simple parallelepiped-shaped box, while the simplified
Tekever AR5 wing employed a more complex FFD box that conforms to the surface
geometry. This choice was made due to the non-symmetric nature of the airfoil. In both
cases, the reference axis is positioned at 25% and 50% in the streamwise and vertical
directions, respectively.

A mesh with a similar refinement level of the one obtained in 3.3 and around 900, 000
elements was used for both wings. Given the geometric differences on the planform of
both wings, they are not expected to create the same lift at the same angle of attack.
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(a) Simplified Tekever AR5 wing.
(b) Rectangular wing with symmetric air-
foil.

Figure 11: Wings used as a starting point for the optimization problem.

For this reason, an optimization considering only angle of attack as a design variable was
performed. Given that the optimizer has only one degree of freedom and one constraint
(a fixed lift coefficient), it will only be able to satisfy the constraint, and further drag
minimization will not be possible. This allows, however, to find the trim angle of attack
needed for both wings to maintain flight at the prescribed CLwing

and the corresponding
CD.

4.3 Results for the rectangular wing

The results obtained departing from the rectangular wing and considering different
individual design variable optimization subproblems are presented in Table 6 and will be
briefly analyzed next.

Table 6: Optimization results for the rectangular wing as starting geometry.

Case α CD

Starting geometry 10.25◦ Reference

Twist
Linear variation 12.89◦ −2.60%
3 FFD sections 11.57◦ −3.06%
7 FFD sections 11.86◦ −3.21%

Chord
Linear variation 10.05◦ −4.15%
4 FFD sections 10.02◦ −5.15%
8 FFD sections 10.03◦ −5.21%

Twist (7 sections) + Chord (8 sections) + Sweep 10.03◦ −5.18%

Airfoil
Constant (24 Control points) 6.46◦ −6.17%

Variable (24× 5 Control points) 5.82◦ −8.55%

Twist optimization
The drag coefficient reduces with the increased degrees of freedom provided to the

optimizer, however, differences between three and seven FFD sections are very small.
Furthermore, less FFD sections usually led to smoother geometries, which may be desir-
able. The linear twist variation also poses itself as an interesting option, given that the
drag reduction difference between it and the best option is 0.61% and it may be easier to
manufacture.
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Figure 12 compares the lift distribution of the obtained solutions. It can be seen
that the distributions tend to the elliptical one as the number of degrees of freedom
increase, but do not match it, having a slightly lower variation of the twist angle across
the wingspan. A reason for this is the fact that separation started being observed near
the trailing edge for such high incidence angles. This is an effect that could not have been
predicted with optimization considering inviscid flow, to which the elliptical distribution
is optimal.

It is also possible to note that the optimized solution for three and seven FFD sections
is in fact very close, explaining the small differences in the drag coefficient observed. It
should be noted that for the case with three FFD sections, the optimizer required only 18
function evaluations, whilst for the seven FFD sections case it required 79, representing
a very significant difference in computational cost.

Figure 12: Comparison between lift distribution for the different twist distributions.

Compared to other variables, it is also possible to observe that the twist distribution
let the angle of attack be higher than the initial geometry. This is expected, given that all
the obtained twist distributions applied a washout, reducing the incidence monotonically
across the whole wingspan and, thus, reducing the angle of attack of those sections.

Chord optimization
A similar pattern to the twist distribution was observed regarding the number of degrees

of freedom, with the results improving with their increment but with the four and eight
FFD section cases yielding very similar results. Here, the difference between the linear
variation and the one with eight FFD sections is 1.06%.

The optimized wings feature lower drag coefficients than the ones obtained with twist
distribution. One factor that may contribute to this is the additional degree of freedom
that chord has at the root, despite having a constraint on the projected area to allow
a fair comparison between different geometries. The linear chord variation is effectively
equivalent to a trapezoidal wing with taper λ = 0.358.

Lift and chord distributions for the three cases are shown in Figure 13, where it can be
seen that the distribution is indeed closer to elliptical than the one obtained with twist
optimization. Regarding the four and eight FFD sections cases, similarly to the twist
case, the lift distributions are very close to each other.

Figure 14 compares the suction side pressure distribution of the optimized wing with
eight FFD sections with the original one. The elliptical shape and lift distributions ob-
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Figure 13: Comparison between lift distribution for the different chord distributions.

tained are evident, with the most visible differences near the wingtip.

Figure 14: Comparison of the pressure distribution in the suction side between the original
and the optimized wing.

Twist + chord + sweep optimization
A combined case with all global design variables was also considered and a very similar

drag coefficient to the chord optimization case with eight FFD sections was obtained.

Airfoil optimization
The airfoil optimization considering a constant airfoil on the three-dimensional wing,

allowing the capture of induced drag effects, yielded the second best result for drag reduc-
tion. Starting from a symmetric NACA 4-series airfoil, the optimizer took 113 function
calls and 28 gradient calls to converge to a cambered airfoil, where thickness was mostly
taken to the minimum value allowed by the constraint. The obtained airfoil profile is out-
lined in orange in Figure 15a. With this, the required angle of attack for the prescribed
wing lift coefficient was reduced by 3.8◦. Another significant change was the distribution
of pressure and viscous drag, with the viscous drag only representing 10.5% of the total
drag of the optimized geometry, compared to 21.5% on the original wing. Figures 15b
and 15c compare the obtained pressure distribution for both airfoils at a section at the
middle of the wing and near the tip, respectively. Considering the middle section, it can
be seen that the pressure peak on the suction side was greatly decrease on the optimized
airfoil, with a smoother recuperation along the chord.

The highest drag reduction was obtained for a variable airfoil across the wing. For this
case, a different FFD box was used with only five sections in the wingspan direction in
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(a) Airfoil shape.
(b) Pressure distribuion at 50%
wingspan.

(c) Pressure distribuion at 99%
wingspan.

Figure 15: Comparison between the original airfoil and the optimized one.

order to reduce the number of design variables and thus, the computational time needed.
Figure 16 shows the airfoils obtained for a section near the root, a section at the middle
of the wing and a section near the tip. As expected, the sections near the root and at the
middle of the wing are similar, given that a symmetry boundary condition was applied
at the root and wingtip effects are not felt yet at those regions, although it has a slightly
higher camber near the root. The most notable difference occurs near the wing tip, where
the airfoil closely matches the original one, with barely any camber.

(a) 3% span. (b) 50% span. (c) 99% span.

Figure 16: Comparisof the pressure distribution in the suction side between the original
and the optimized wing at three sections.

To reach the optimized wing, 128 function calls and 35 gradient calls were needed,
representing an increase of only 13% and 25% to the constant airfoil case. It should be
noted, however, that the gradients naturally took longer to compute in the variable airfoil
case, given the higher number of design variables.

4.4 Results for the simplified Tekever AR5 wing

The summarized results of the optimization using the simplified Tekever AR5 wing as
starting geometry geometry are found in Table 7.
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Table 7: Optimization results for the simplified Tekever AR5 wing as starting geometry.

Case α CD

Starting geometry 4.03◦ Reference

Twist
Linear 2 sections 3.96◦ −0.39%
7 FFD sections 4.56◦ −0.80%

Chord (Linear 2 sections) 4.07◦ −0.11%

Twist (7 sections) + Chord (2 linear sections) 4.09◦ −1.16%

Airfoil (24× 8 Control points) 4.59◦ −2.54%

Twist optimization
Two cases were defined: A linear variation and a variation with full freedom on the

seven FFD sections. Given the the nature of the original geometry, that can be defined by
two separate sections, the linear case was defined in two separate sections. To define them,
the optimizer was able to change the twist angle at the junction between both sections
and at the wingtip. From these values, two separate linear distributions are defined.

It is clear that the initial geometry is much closer to the elliptical lift distribution than
the rectangular wing and for this reason, the drag reductions obtained are much smaller.
In both scenarios, whether we consider a linear twist distribution defined in two linear
sections or seven FFD sections, the optimizer successfully approached an elliptical lift
distribution. Notably, the case involving seven FFD sections resulted in nearly twice the
drag reduction compared to the linear twist distribution defined in two sections. This
significant improvement can be observed in Figure 17, where the lift distribution of the
seven FFD sections case is closer to elliptical.

Chord optimization
The parametrization for the chord followed a similar approach to that of twist. How-

ever, it was adjusted to ensure a constant taper at the inner section by enforcing the
same scaling factor applied to the first two FFD sections, representing the first degree
of freedom of the optimizer. The second determined the scaling factor at the wingtip
and a linear distribution was then defined between the junction between sections and the
wingtip. Due to the constraint imposed by the projected area, the optimizer only had
one effective degree of freedom, which determined the taper, λ, for the outer section of
the wing. This case was the only configuration tested, in order to maintain the original
wing design philosophy. The optimizer produced a different geometry, with the final scale
factors being 1.09 and 0.76, but the resulting drag reduction for this particular case was
minimal.

Twist + chord optimization
A combined optimization case with full freedom to the seven twist design variables

and the taper of the outer section was also considered and, unlike the rectangular wing,
the results were better than any of the singular cases, obtaining a drag reduction of more
than 1%. The obtained scale factors for chord distribution were 1.13 and 0.67, and a twist
distribution was also applied, with its lowest value, at the wingtip, being −4.14◦. This
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Figure 17: Comparison between lift distribution for the different parametrizations.

Figure 18: Comparison between chord and twist distribution for the different parametriza-
tions.

results in a lift distribution almost elliptical, as Figure 17 shows. In Figure 18, it is possible
to see the twist and chord distribution obtained for this and the other parametrizations
tested, starting from the simplified Tekever AR5 wing geometry.

Airfoil optimization
Finally, a variation in airfoil shape along the wingspan was also optimized. Similar to

the rectangular wing case, this optimization yielded the greatest reduction. However, the
reduction achieved was significantly smaller than that of the rectangular wing, which was
expected considering that the starting profile for this case was already optimized for the
specified flight condition.

Figure 19 provides a comparison between the original airfoil profile and the optimized
one at three different sections along the wingspan. The comparison reveals that the
modifications in the initial sections mainly involved a decrease in thickness and a slight
reduction in camber. Interestingly, at the wing tip, the optimizer converged to a symmetric
airfoil, resembling the case of the rectangular wing with a symmetric airfoil geometry as
a starting geometry.
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(a) 3% span. (b) 50% span. (c) 99% span.

Figure 19: Comparisof the pressure distribution in the suction side between the original
and the optimized wing at three sections.

5 CONCLUSIONS

This work presents a study on the optimization of two different starting geometries,
namely the rectangular wing with a symmetrical airfoil and the simplified Tekever AR5
wing, using different parametrizations. The results demonstrate notable drag reductions
of up to 8.55% for the rectangular wing and 2.54% for the simplified Tekever AR5 wing.

Additionally, most of the optimized lift distributions closely approximated the elliptical
one. The use of two starting geometries in this study highlights the potential for opti-
mizing both naive geometries and geometries obtained from extensive design processes,
thereby showing capabilities for both refinement of existing designs as well as the creation
of new designs from scratch considering a specified flight condition.
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Abstract. To facilitate widespread adoption of automated engineering design techniques,
existing methods must become more efficient and generalizable. In the field of topology op-
timization, this requires the coupling of modern optimization methods with solvers capable
of handling arbitrary problems. In this work, a topology optimization method for general
multiphysics problems is presented. We leverage a convolutional neural parameterization
of a level set for a description of the geometry and use this in an unfitted finite element
method that is differentiable with respect to the level set everywhere in the domain. We
construct the parameter to objective map in such a way that the gradient can be com-
puted entirely by automatic differentiation at roughly the cost of an objective function
evaluation. The method produces optimized topologies that are similar in performance yet
exhibit greater regularity than baseline approaches on standard benchmarks whilst having
the ability to solve a more general class of problems, e.g., interface-coupled multiphysics.

Keywords: neural, unfitted, level set, topology optimization
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1 INTRODUCTION
After the birth of topology optimizations (TOs) in the field of structural design [1], efforts
have been made to increase the effectiveness of such automated design approaches and
allow for their deployment on a more general class of problems [2, 3].

A plethora of TO strategies exist through the literature, the most common of which
being density-based methods using the so-called SIMP (Solid isotropic microstructure
with penalization for intermediate densities) method [4]. These involve varying a material
distribution continuously between 0 and 1 to introduce an artificial representation of the
boundary. Although simple for basic structural problems, a way to represent intermediate
design variables arising at the boundary must be included, which becomes increasingly
complex in multi-physics applications and makes imposing arbitrary boundary conditions
non-trivial [5].

An alternative technique that can overcome some of the problems presented by density
methods and tackle a more general class of problems (e.g., interface-coupling multiphysics
and problems that involve surface PDEs on boundaries) is the level set (LS) TO method
[6, 7] Using this approach, the boundary is described by the zero iso-surface of a LS
function. It is instead this LS function that is varied to obtain optimized designs. A
precise location of the boundary is then available.

A variety of alternative implementations of the LS TO method have been made [8]. They
can be distinguished, among other things, by how they update the topology at each
iteration and their means of geometry mapping. The methods to update geometries
involve either updating the solution of Hamilton-Jacobi equations by a velocity field based
on the sensitivity information [9, 10] or using a parameterization of the topology that is
an explicit function of the design variables of a steepest descent optimization scheme. The
latter approach allows one to leverage well-established nonlinear programming techniques
and is the method selected for this work. Types of geometry mappings include using the
LS function to define a conformal mesh to the boundary, see e.g. [11, 12], which requires
re-meshing at each iteration, density-based mappings (see e.g. [13–15]), which recover
some of the issues related to density methods, or unfitted/immersed boundary techniques
(see, e.g., [16–18]). unfitted methods rely on a fixed background mesh and capture the
precise location of the boundary in the model using integration on sub-triangulations
aligned with the zero iso-surface of the LS function. By doing so, re-meshing and the
introduction of intermediate densities are avoided.

A known issue with unfitted techniques is the ill-conditioning problem associated with
small cut elements. The common XFEM [19, 20] approach uses a finite element (FE) space
restricted to the interior domain and cut cells for the solution and requires stabilization in
the vicinity of the boundary by, for example, ghost penalty terms [21] or cell aggregation
[22, 23]. These methods are consistent and can provide high-order approximation [24]
however the support of the stabilization terms change depending on the location of the
cut cells, leading to potential non-differentiability in the optimization problem which can
harm the convergence of gradient-based optimization algorithms. The specific unfitted TO
technique used in this work is instead a version of the finite cell method (FCM) [16], in
which a non-consistent penalty term is added everywhere in the fictitious domain (outside
the physical domain) to provide robustness. This stabilization is suitable for TO because
it is differentiable with respect to the level set parameterization (see Section 5). An
implementation of the FCM for TO is made in [16], which uses a refined grid for the
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material boundary compared to the solution to capture fine-scale geometry. We instead
use subgrid triangulations using the LS function as in [19] to capture fine-scale structure
in the integration and thus avoid the need to increase the number of design variables
parameterizing the geometry. The loss of consistency of the FCM is not an issue in TO,
where high-order approximations are not very relevant.

It is natural to use a FE function for a discrete representation of the LS. Doing so, a
parameterization is obtained with a user-controlled resolution. A common approach to the
optimization problem is to take the degrees of freedom (DOFs) of this LS as the design
variables [19, 25, 26]. This choice, however, means that each parameter is only capable
of a local influence on the LS function to the surrounding cells. As an alternative, we
introduce a neural parameterization of the geometry. We set our design variables in this
case to be the parameters of a particular artificial neural network (NN) that outputs the
LS function DOFs. Performing this step, we obtain control over the optimization problem
by controlling the connectivity of parameters, allowing them to influence cells spread
across the domain. Although the expressivity is unchanged, since the LSs are in the same
space, the parameters controlling the evolution act to optimize the geometry at multiple
scales. The ultimate objective is then for the optimization process to unveil regularized
geometries with good performance.

The combination of machine learning and TO was explored as early as the 1990s [27] but
has gained massive momentum in recent years [28, 29]. NNs and other ML techniques
can be incorporated into the TO process in many ways. Common data-driven approaches
attempt to train networks to map problem descriptions directly to a geometry [30–33].
These however require pre-training on already optimized samples and suffer from a lack of
generalisability [29]. Others replace some or all of the optimization loop for accelerated
convergence by training an auxiliary network [34, 35]. These approaches are based on the
premise, which in general is not necessarily true, that early iterations of the optimization
contain the information to produce performant optimal geometries. An alternative method
is the inclusion of a NN as an alternative parameterization of the geometry [36–38].
These approaches typically optimize the parameters of a NN representing a continuous
function that maps positions in space to a density. These approaches tend to focus on
reducing the dimensionality of the design space assuming that NNs can efficiently achieve
expressiveness with a small number of parameters [39]. A reduction in parameters does
not, however, necessarily lead to faster convergence for NNs [37] compared to the standard
SIMP approach.

Instead of focusing on a neural parameterization that reduces the dimensionality of the
problem, we select a network description of the geometry which is specifically designed to
learn effectively on problems involving the segmentation of a domain. The network used
in this case is a modification of the U-Net convolutional network. The U-Net architecture
was originally developed for biomedical image segmentation tasks [40] but has proven
successful for a variety of applications in which multi-scale features and spatial correlation
is important [41]. These networks are typically composed of encoding and decoding halfs.
The encoding section maps the context of input images into a low dimensional latent
space which is localized in the upsampling section to provide segmentation at the desired
resolution. The work in [38] exploited the properties of this network showing improved
performance with a U-Net density parameterization for a SIMP structural optimization
problem. Similar to [38], we use a trainable input vector for the network and feed this into
the up-sampling half of the U-Net. In contrast to most applications of this network, we

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

286



Connor N. Mallon, Aaron W. Thornton, Matthew R. Hill and Santiago Badia

have no input image and therefore do not need the encoding of half of the network. It is the
up-sampling (or decoding) part of the network the one that provides the parameterization
of the multi-scale features which are important in this context.

The Julia [42] programming language is used to implement all aspects of this project
with the FE toolbox Gridap [43, 44] being the main package utilized. We also use the
Julia machine learning library Flux [45] for the implementation of the U-Net. Using these
foundations, we implement a routine combining NNs with an unfitted FE based TO. The
main contributions of this work are the presentation of:

• An unfitted LS TO method with a NN parameterization that assists to achieve
simple optimized geometries with similar or better performance compared to baseline
methods and

• a fully automatically differentiable unfitted LS TO method for multiphysics problems
with complex boundary conditions.

We present the overall framework as follows. First, in Section 2, we present the entire
optimization loop at a high level. We then go into more detail about various stages in
the loop. Details of the architecture of the neural network are found in Section 3, details
of the geometry processing are presented in Section 4, the numerical discretization of
the problem is presented in Section 5 and the gradient implementation in Section 6. We
then benchmark the method against baseline methods and show the generality of the
method with an application to a multiphysics problem with complex boundary conditions
in Section 7.

2 OPTIMIZATION PROBLEM
In this section, we provide a succinct overview of the overall TO algorithm proposed in
this work. We aim to solve the problem:

min
p

J(u(p),p)

s.t R(u(p),p) = 0,

V (p) = 0,

(1)

where p are the parameters that describe our geometry, V is an equality constraint (e.g.
for the volume), R is the PDE residual, u is the solution of the PDE and J is the objective.
If desired, further equality and inequality constraints can then be imposed by adding
penalty terms to the objective function.

2.1 Optimization Loop
To optimize the parameters p, we make use of a gradient-based optimization strategy.
To do so, we establish a map between p and J and a means to compute the gradient dJ

dp

for parameter updates. For the neural LS TO method, p represents the parameters of a
particular NN that outputs a vector ϕ. This vector is processed using the operator H to
obtain the LS φ used in the PDE and objective function. It is also only through φ that
the PDE and objective depend on the parameter vector p. With these definitions, we
present the optimization loop for solving (1) in Figure 1.
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φ = H (ϕ)

ϕ : ϕ = N (p)

u : R(u(φ), φ) = 0

Y

N

Figure 1: Computational graph of the optimization loop. We start with an input to the
system p, and perform the forward pass by descending through the blue boxes on the right
side to obtain a performance measure J as explained in Section 2.1.1. The convergence
criteria are used to decide whether this J represents an acceptable minimum. If not, the
backward pass is performed to compute an update for the parameters as explained in
Section 2.1.2 and the loop is continued.

2.1.1 Forward Pass

To solve the forward problem and get a performance measure J for a set of parameters p
we descend through the light blue boxes on the right hand side of Figure 1 by performing
the following steps:

1. In the first light blue box, we evaluate the network N : p ∈ RNp 7→ ϕ ∈ RN , where
Np is the number of parameters and N is as defined in Section 3.

2. In the second light blue box, we process the output of the network ϕ using the
operator H : ϕ ∈ RN 7→ φ ∈ V 1

h to obtain a suitable LS description of the geometry
φ, where V 1

h is the FE space for the LS defined in Section 4. This involves an
interpolation on a FE space, smoothing and the inclusion of an equality constraint
on the geometry so that the final LS function satisfies V (φ) = 0. This step is broken
down in Section 4. We enforce the equality constraint here to allow for the use of an
unconstrained optimization method suitable for NNs.

3. In the third light blue box, we solve the FE problem associated with the weak form
of the residual R(uh(φ), φ) = 0 on the domain segmentation defined by φ for an
approximate solution uh obtained using a FE discretization. Details of the FCM
used to solve the problem are given in Section 5. We can then evaluate the objective
J(uh(φ), φ) ∈ R.
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Figure 2: Architecture of the NN. A trainable input vector Θ is fed into the network.
The light blue arrow involves a set of operations that include a fully connected layer and
the dark blue arrow involves a set of operations that include a convolutional layer. The
intermediate data structures are of size (cl, wl, hl) and the final output, after n layers,
gives ϕ.

2.1.2 Backwards Pass

To perform the update for the parameters using a steepest descent optimization strategy,
we require an evaluation of the gradient ∂J

∂p
. To do this efficiently at a cost roughly matching

that of the forward pass, we use reverse mode differentiation and define rules to propagate
sensitivities through each of the steps in the forward pass. We use an adjoint rule for
the PDE and use automatic differentiation for all of the partial derivatives, including the
derivative of integrals with respect to the LS. The derivative is then passed onto a chosen
optimizer to update the parameters p. The implementation of the gradient computation
is discussed in Section 6.

3 NETWORK ARCHITECTURE
In this section, we present the NN architecture used in the geometry parameterization.
This describes the mapping between the parameters p and the LS vector ϕ. The network
used here is mainly built from convolutional layers. In contrast to a fully connected
network, convolutional networks connect smaller sets of neurons in each layer assuming
that neurons in close proximity have a more important relationship. This is a natural
relaxation for the processing of spatial data. Furthermore, convolutional networks are
made efficient by the assumption that features that are found in one local block are likely
to be found in a different local block, i.e. somewhere else in the domain. This is done
by sharing parameters amongst local blocks in the form of a convolutional filter. The
specific architecture used in this work is the one presented in [38]. Because we are simply
reparameterizing the pixel values, there is no input into the network in the traditional
sense. Most approaches combining NNs and TO use fully connected layers and take the
network to provide a map between a spatial input x and a scalar output fθ(x) [36, 37]. In
our case, we only need a single evaluation of the network to output a vector fθ(Θ) that
represents the entire discrete LS function. The input vector in our case is just taken to be
a set of trainable parameters Θ.

The architecture of the network is illustrated in Figure 2. The first arrow indicated with
the label Dense in Figure 2 contains a fully connected layer and a reshape:

x(1)(Θ) = reshape(WΘ + b), x1 ∈ Rc1,w1,h1 , (2)
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where W ∈ Rc1w1h1,NΘ is the dense weight matrix, b ∈ Rc1w1h1 is the bias and reshape :
Rc1w1h1 → Rc1,w1,h1 is a reshaping map. The lengths NΘ, c1, w1 and h1 represent the
length of Θ, the initial number of channels, the latent space image width and the latent
space image height, respectively. Note here that the first nonlinearity is imposed at the
beginning of the next layer.

The upsampling convolutional layers, depicted by the dark blue arrow in Figure 2, are
defined as:

x(l+1)(x(l)) = P (l)(%(Φ(l)(tanh(x(l))))), x(l) ∈ Rcl,wl,hl , x(l+1) ∈ Rcl+1,wl+1,hl+1 , (3)

where Φ(l) : Rcl,wl,hl → Rcl,wl+1,hl+1 is a bilinear resize, % is a normalization to a mean of 0
and variance of 1 across the channel dimension and P (l) : Rcl,wl+1,hl+1 → Rcl+1,wl+1,hl+1 is a
convolutional operator with kernel size (5, 5).

In this approach, our input to the network Θ is taken to be trainable. So to define our
parameter vector p, we collect the parameters of W, b, Θ and P i into a vector p ∈ RNp .
Then, by composing the layers, we obtain the function N : p ∈ RNp 7→ ϕ ∈ RN :

N = x(n)(...(x(2)(x(1)(Θ)))), (4)

where N is the number of DOFs of the FE function for the LS. The output image of
size wn, hn is interpreted as a vector ϕ representing the DOFs of the LS FE function as
described in Section 4. Importantly, the locality is preserved when defining this function.
As we traverse the network, we follow the design principle of the upsampling section of
the U-Net and trade-off channel depth for spatial resolution. This means that, in general,
the widths w and heights h will increase as we move through the network and the number
of channels c will decrease as we move through the network. The exact trade-offs here
can vary, but we must set the resizes and channel refinement to ensure hnwn = N and
cn = 1 so that our output ϕ makes sense as a vector representing the DOFs for the LS.
We can increase the network size in the dense layer by increasing NΘ, w1 and h1 and in
the convolutional layers by increasing the elements in c and the number of layers.

In a typical LS method, the user is required to manually initialize the geometry with holes.
One approach to initializing the NN is to pre-train the network to output the manually
selected geometry with holes, as in [46]. Using this as an initial guess, however, causes
the geometry to converge quickly to poor local minima. A more common approach when
working with NNs and a given objective map is to start with small random weights [47]. In
this case, we have high asymmetry in the weights and little activation function saturation.
It turns out that a random initialization of the NN with the volume constraint gives an
initial guess of a domain with a few holes in random locations. This is in contrast to
initializing the LS itself with random values which gives a geometry with many small holes
and fine features which is not necessirly desirable [48]. As is common in NN approaches, we
can then easily take multiple seeds for the geometry using different random initializations
to alleviate initialization dependency. The random initializations simply correspond to
different size holes in different locations. Using this method we eliminate the need for
manual geometry initialization.

4 LEVEL SET FUNCTION PROCESSING
In this section, we detail the LS description of the geometry used in the method. We
explain how the output vector from the NN ϕ is used to define the LS to be used in the
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numerical method. The computation of the LS function is performed in four steps. We
introduce an interpolation step in Section 4.1 to obtain a first LS function φn(1). In Section
4.2, we smooth out this LS to obtain a smooth LS function φf(2). Then, we perform a
reinitialization of that LS in Section 4.3 to obtain a LS function φs(3). Finally, in Section
4.4, we propose a volume correction strategy to end up with the final LS function φb(4). In
the subsequent sections, we we will refer to this final LS function φb(4) as φ.

4.1 Interpolation
In this method, we work with discrete LS functions φ ∈ V 1

h . The DOFs of V 1
h are the

values of the function at the vertices of Th, which we denote with {xi}Ni=1, where N is the
number of mesh nodes. Thus, there is an isomorphism between V 1

h and RN . The output
image vector of the NN ϕ are the DOFs that uniquely determine the LS FE function.

4.2 Smoothing
Next, we convolve the function with a linear filter for smoothing:

φf(2)i
= (

N∑

j=1

wij)
−1(

N∑

j=1

wijφn(1)j
), (5)

where wij = max(0, rf − |xi− xj|), φn(1)j
is the jth degree of freedom of the function φn(1),

φf(2)i
is the ith degree of freedom of the function φf(2) and rf is the smoothing radius.

4.3 Reinitialization
We then reinitialize the LS as a signed distance function. This is often done to gain control
over the spatial gradient of the LS function to improve convergence [8]. In our case, it is
of even greater importance as it also guarantees that when we apply the translation to
the LS to satisfy the volume constraint, we do not artificially introduce volumes into the
domain far from the boundary where the LS is close to zero. This would add discontinuity
to the problem harming convergence. To perform this step, we solve the reinitialization
equation in [49] to obtain a signed distance function φs(3) ∈ V 1

h :

∂φs(3)

∂τ
+ sign(φs(3))(|∇φs(3)| − 1) = 0. (6)

The problem is solved using Picard iterations at steady state using the initial point
φf(2) so that only one solve of the adjoint equation is required in the backwards pass.
Artificial viscosity is added to the problem for stabilization and a surface penalty term is
integrated on the embedded boundary to prevent movement of the zero iso-surface in the
reinitialization. The weak form of the problem is then to find the solution φs(3) ∈ V 1

h of
the equation:

∫

Ω

(w ·∇(φs(3))v + cah|w|∇(φs(3))∇v − sign(φs(3))v)dΩ +

∫

Γ

(φs(3), v)dΓ = 0 (7)

for all v ∈ V 1
h , wherew = sign(φs(3))(∇(φs(3))/|∇(φs(3))|), ca is the stabilization coefficient,

set to 3, and h is the element size.

4.4 Translation
The next task is to impose the volume constraint. This is done by applying a translation
to the entire LS function. Here we solve the nonlinear equation V for the scalar bias b
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Ωin∂Ω
R(u,v)

Rstb(u,v)
Ωout

Γ

Figure 3: Illustration of the problem domains. The background domain is segmented
into the domains Ωin and Ωout. In Ωin, the physical terms R(u,v) are integrated. In Ωout,
the stabilization terms Rstb(u,v) are integrated.

to obtain a translation to the LS function such that the domain Ωin satisfies the volume
constraint. A bisection method is used to find the root b of the equation:

V =

∫

Ωin

dΩ− V0 = 0, (8)

where Ωin is defined by the LS φb(4) = φs(3) + b and V0 is the volume fraction given by the
constraint. This is the LS which is then used to define the boundary of the FE problem.
Details of how the LS is used to define domains is given in the next Section.

5 NUMERICAL DISCRETIZATION
Here we formulate the numerical discretization of the PDEs being solved in the simulation
step of the optimization loop. We consider a background polyhedral bounded domain Ω
with boundary ∂Ω. A LS function φ(x) is used to split Ω into two subdomains Ωin(φ) and
Ωout(φ) as follows (see Figure 3):

Ωin(φ) = {x ∈ Ω : φ(x) > 0}, Ωout(φ) = {x ∈ Ω : φ(x) < 0}. (9)

We denote the interface between these two subdomains as Γ(φ)
.
= ∂Ωin(φ)∩ ∂Ωout(φ). Let

us assume that ∂Ωin(φ) ∩ ∂Ω 6= ∅. The domain Ωin(φ) is the one in which we consider our
PDE problem. The weak form of the continuous problem can be stated as follows: find
u ∈ V such that ∫

Ωin(φ)

R(u,v)dΩ = 0, ∀v ∈ V. (10)

where V is a Hilbert space in which the problem is well-posed. We consider zero flux
Neumann boundary conditions on ∂Ωin(φ)\∂Ω and (for simplicity) homogeneous boundary
conditions on ∂Ωin(φ) ∩ ∂Ω; the generalization to non-homogeneous Dirichlet boundary
conditions is straightforward.

The domain Ωin(φ) will change along the optimization process. As a result, it is not
practical to compute body-fitted unstructured meshes for the geometrical discretization
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of Ωin(φ). Instead, we consider a background mesh, which can simply be a Cartesian
background mesh of Ω and make use of an unfitted FE discretization. Unfitted (or
embedded) discretizations relax the geometrical constraints but pose additional challenges
to the numerical discretization [21, 50]. The first issue is the integration over cut cells (for
details, see [51]). The other issue is the so-called small cut cell problem. Cut cells with
arbitrary small support lead to ill-conditioned systems [52]. Various techniques can be
used to stabilize the problem including the cut finite element method (CutFEM) [21], the
aggregated finite element method (AgFEM) [50] and the FCM [53]. We select the FCM
method in this case because it is differentiable with respect to the LS everywhere in the
domain. The CutFEM and AgFEM are conversely not differentiable.

In order to state the discrete form of the continuous problem, we introduce the unfitted FE
space. Let Th represent a conforming, quasi-uniform and shape regular partition (mesh) of
Ω, h being a characteristic mesh size. Ω can be a trivial geometry, e.g., a square or cube,
and Th can be a Cartesian mesh. We define a nodal Lagrangian FE space of order q ≥ 1
on Th as:

V q
h = {vh ∈ C0(Ω) : vh|K ∈ Xq(K) ∀K ∈ Th}, (11)

where Xq(K) is the space Qq(K) of polynomials with maximum degree q for each variable
when Th is a quadrilateral or hexahedral mesh and the space Pq(K) of polynomials of
total degree q when Th is a simplicial mesh. In this work, we consider low order spaces,
which is the most reasonable choice for TO applications.

The weak formulation of the problem solved by the method is now described. Let us
represent with V q

h,0 = V q
h ∩ C00(Ω̄) the nodal FE space that vanishes on the boundary ∂Ω.

Now, we can define a first-order FCM discretization of (10) as follows: find uh ∈ V 1
h such

that ∫

Ωin(φ)

R(uh,vh)dΩ +

∫

Ω\Ωin(φ)

αoutRstb(uh,vh)dΩ = 0, ∀v ∈ V 1
h , (12)

where αout � 1 is the penalty parameter and Rstb is a stabilizing differential operator on
the artificial domain.

5.1 Poisson Equation
The poisson equation is used to model the temperature θ(x) that satisfies

−∇ · (κ∇θ) = f in Ωin(φ), (13)

where κ is the thermal conductivity tensor of the material and f is a thermal source. A
zero Dirichlet condition (θ = 0) is prescribed on Ωin(φ) ∩ ∂Ω and a zero flux condition
(n · (κ∇θ) = 0) is prescribed on Γ(φ).

The FCM approximation of this problem without a source term reads as: find θh ∈ V 1
h,0

such that
∫

Ωin(φ)

κ∇θh ·∇vhdΩ +

∫

Ω\Ωin(φ)

αoutκ∇θh ·∇vhdΩ = 0, ∀vh ∈ V 1
h,0. (14)

One can readily check that this method is weakly enforcing the zero flux condition on
Γ(φ) as αout → 0. We observe that we use the same differential operator in the artificial
domain for stabilisation purposes (times the scaling coefficient αout).
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We consider the TO problem in which we aim at finding a level-set φ that minimizes the
integral of the temperature:

J(φ, θh(φ)) =

∫

Ω(φ)

θh(φ) dΩ, (15)

where θh(φ) is the solution of (14) given φ.

5.2 Linear elasticity
We want to obtain the displacement d(x) that satisfies the linear elasticity equation

−∇ · σ(d) = f in Ωin(φ), (16)

where σ = λtr(ε)I+2µε is the stress tensor, ε = 1
2
(∇d+(∇d)>) is the symmetric gradient,

d is the displacement, λ and µ are the Lamé parameters given by λ = (Eν)/((1+ν)(1−2ν))
and µ = E/(2(1 + ν)) and f is the forcing term. A zero Dirichlet condition (d = 0) is
prescribed on Ωin(φ)∩ ∂Ω and a zero stress condition (n ·σ(d) = 0) is prescribed on Γ(φ).

The FCM approximation of this problem without a forcing term reads as: find dh ∈ V 1
h,0

.
=

[V 1
h,0]

D such that
∫

Ωin(φ)

σ(dh) : ε(vh)dΩ +

∫

Ω\Ωin(φ)

αoutσ(dh) : ε(vh)dΩ = 0, ∀vh ∈ V 1
h,0. (17)

It is easy to check that the zero-stress condition on Γ(φ) is recovered as αout → 0. For
the linear elasticity equation, we again use the same differential operator in the artificial
domain for stabilisation purposes.

A typical TO problem in solid mechanics is the minimization of the strain energy. In this
case, we aim at finding a level-set φ that minimizes the cost function

J(φ,dh(φ)) =

∫

Ω(φ)

σ(dh) : ε(dh) dΩ, (18)

where dh(φ) is the solution of (17) given φ.

5.3 Linear Elasticity with Fluid Forcing Terms
Once again, we want to obtain the displacement dh(x) that satisfies the linear elasticity
formulation in (16). In this case, however, we consider the surface traction exerted by the
fluid: ∫

Γ(φ)

(n ·∇uh − ph n) · vdx, (19)

where the fluid velocity uh and pressure field ph are obtained by solving a fluid problem
in the domain Ωout. These fields are obtained by solving the Stokes equations with a
Brinkmann penalization as in [54] but without intermediate interpolation of permeabilities
at the boundary.

In order to approximate the fluid problem, we use a mixed FE method, namely the equal
order pair V 1

h,0 × V 1
h .
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Ωε
in

ε

Figure 4: A small perturbation with size ε to the LS to form a new domain Ωε
in.

We find (uh, ph) ∈ V 1
h,0 × V 1

h,0 such that:
∫

Ω

[
αuh ·ψh + µ∇uh ·∇ψh − ph(∇ ·ψh)− (∇ · uh)qh − h2∇ph ·∇qh

]
dx = 0,

∀ψh, qh ∈ V 1
h,0 × V 1

h ,

(20)

where {
α = 0 in Ωout

α = αu in Ωin

(21)

using an artificial porosity αu to make the fluid problem well posed in the solid domain
Ωin and enforce the no-slip boundary condition. In the fluid domain Ωout we recover the
Stokes equations.

The TO problem once again involves finding a level-set φ that minimizes the elastic strain
using (18).

5.4 Differentiability of the unfitted FE solver
An important property for the convergence of a TO strategy is the notion of shape
differentiability of the cost function. A functional under a PDE constraint is considered
shape differentiable if the mapping φ→ J(uh(φ), φ) is differentiable at the admissable set
of domains in Ω defined by φ. In this section, we discuss how the choice of FE stabilization
can effect this property.

The model problem in (14) with a FCM stabilization is equivalent to that of a typical two
phase conductivity problem. With a solution uh ∈ H1(Ω), the functional J(uh, φ) for this
problem can be proven to be shape differentiable, see [55, Theorem 4.9].

Conversely, unfitted techniques involving stabilization only in the vicinity of the boundary
are in general not shape differentiable. Regions of non differentiability arise (typically
when the boundary crosses over mesh nodes) harming the convergence of the geometry to
optimized solutions [56]. To see why this is the case, we investigate shape pertubations
under the CutFEM and AgFEM formulations.
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Γε

Figure 5: The change in a portion of the ghost skeleton triangulation ΓG, depicted by
the red faces, before and after a perturbation to the boundary.

If we were to use a restricted space for the solution and add ghost penalty terms in
the vicinity of the interface following the CutFEM method [57], the problem is to find
uh ∈ W 1

h,0. such that:
∫

Ωin(φ)

R(uh,vh)dΩΩin
+ j(uh,vh)ΓG

= 0, ∀vh ∈ W 1
h,0, (22)

for a ghost penalty term j on a ghost skeleton triangulation ΓG using the space W 1
h,0 as in

[57]. Consider the change to the domain Ωin from Figure 3 caused by a perturbation εδ,
where ε ∈ R and δ ∈ V 1

h , to the LS function φ. The resulting domain Ωε
in may be as in

Figure 4. The ghost penalty term in this formualtion does not depend on ε and instead
changes depending on which cells are cut. Specifically, if Γε crosses over a mesh node as in
Figure 5, the ghost skeleton triangulation includes the faces of a new element. Non-zero
terms are integrated on this triangulation introducing discontinuity to the problem with
respect to the shape, since:

lim
ε→0

[j(uh,vh)Γε
G
− j(uh,vh)ΓG

] 6= 0. (23)

With different terms added to the linear system which do not go to zero with ε, we can
see that the derivative of the solutions with respect to the shape can be ill-defined. A cost
function operating on the solution could not, in general, be shape differentiable at these
points.

In the AgFEM, the problem is to find uh ∈ V agg
h,0 such that:

R(E(uh), E(vh))Ωin
∀vh ∈ V agg

h,0 , (24)

for the extension operator E and space V agg
h,0 as defined in [50]. Similar to the CutFEM,

regions of non-differentiability in the problem exist when the zero isosurface of the LS
crosses over mesh nodes:

lim
ε→0

[R(E(uh), E(vh))Ωin
−R(E ε(uh), E(vh))Ωε

in
] 6= 0, (25)

since E ε(u) 6= E(uh) in general because the support for cut cells potentially changes
depending on which cells are cut. Following the same reasoning as above, the method
is therefore not shape differentiable. The same is true for other methods which use
stabilization approaches that act only in the vicinity of cut cells, e.g. [58], using similar
branching strategies when crossing a node or reaching a certain threshold. �
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6 GRADIENT IMPLEMENTATION
To the best of our knowledge, there is no existing implementation of an unfitted LS TO
method that accepts arbitrary residuals defining the PDE and computes the entire gradient
dJ
dp

by automatic differentiation. Making use of a backwards pass, we do this efficiently by
defining differentiation rules for each of the steps in the method.

6.1 Integral Differentiation Operator
The backward pass is mainly composed of gradients of integrals with respect to the DOFs
of FE functions. To make the derivative computation efficient, we exploit the fact that
the DOFs only have an effect on surrounding cells and utilize the optimizations exploiting
sparsity in the FE library Gridap [59]. Integrals in the domain can be divided into cell-wise
components:

I (u,v, φ) =
∑

K∈Th
I K(uK ,vK , φK), (26)

where uK ∈ RΣu ,vK ∈ RΣv and φK ∈ RΣφ are the DOFs parameterising the restrictions
of u, v and φ to the cell K and Σu, Σv and Σφ are the number of DOFs in K for the
respective functions. Gradients can then be computed at roughly the cost of an integral
evaluation for each cell K:

∂I

∂φ

K

= ∇F
φ I K(uK ,vK , φK), (27)

where the operator ∇F
φ represents taking the gradient with respect to φK using a vectorized

forward propogation of dual numbers [60]. To make taking derivatives in this way possible
for the LS, we implement the integrals so that each φK is accepted as the argument to
compute the contribution I K :

I K : φK ∈ RΣφ 7→ IK(uK ,vK , φK) ∈ R. (28)

where
I K(uK ,vK , φK) =

∫

K(φK)

I(uK ,vK)dK (29)

A key point is that the integral function subroutines, including all the unfitted FE tools,
are implemented in such a way as to allow the propagation of dual numbers through the
code. We also make use of a reverse mode operator ∇R for the backwards propogation of
derivatives used where appropriate, e.g., for the NN.

6.2 Backwards Pass Routine
We now present the backwards pass in detail. To compute the sensitivity of the objective
with respect to the parameters, we start with the seed dJ

dJ
= 1 and propogate derivatives

in reverse mode using the chain rule:

dJ

dp
=
dJ

dJ

(
∂J

∂φ
+
∂J

∂u

du

dφ

)
dφ

dϕ

dϕ

dp
(30)

where an adjoint method on the problem residual R is used to differentiate through the
PDE:

∂J

∂u

du

dφ
= −λT dR

dφ
( here we solved dR

du

T

λ =
dJ

du

T

). (31)
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We then use the chain rule to differentiate through the LS function processing steps:

dφ

dϕ
=

dφ

dφs(3)

dφs(3)

dφf(2)

dφf(2)

dϕ
. (32)

The volume constraint here involved a root finding method. To differentiate through this
step, we utilize the implicit function theorem:

dφ

dφs(3)

=
∂φ

∂φs(3)

− ∂φ

∂b

∂V

∂b

−1 ∂V

∂φs(3)

, (33)

and to differentiate through the signed distance map, we use the adjoint method once again
for the residual Rs equal to the integral in (7). Finally, we use standard backpropagation
to compute the derivative with respect to the parameters of the NN. The steps of the
backward pass are presented explicitly in Algorithm 1.

7 NUMERICAL EXPERIMENTS
7.1 Benchmark Results
We first compare the optimized results obtained for benchmark problems against baseline
methods using the model problems presented in Section 5.

The method presented in this work, the NN-LS method, is compared against its non-neural
counterpart the Pixel LS (Pixel-LS) method, that is, the same method without a neural
prior where instead the DOFs of the LS function are taken as the optimization parameters.
We also compare the method against the SIMP method of TO again using both a neural
prior (NN-SIMP) and the standard approach (Pixel-SIMP). Following a standard SIMP
implementation of the heat conduction problem, we use a conductivity based on the power
law k = αT + (1− αT )ργ where ρ is a design variable given by a FE function constructed
on the space V 1

h where the DOFs are the optimization parameters or output vector of
the NN in the Pixel-SIMP and NN-SIMP cases, respectively, and γ is the penalization
parameter, taken to be equal to 3. Similarly, for the SIMP implementation of the structural
problem, we use a Youngs Modulus E = αd + (1− αT )ργ. To maintain a fair comparison
between methods, we use the optimizers most widely regarded as suitable for the particular
parameterization. Namely, we take the most commonly used MMA optimization strategy
[61] for the pixel parameterization and the ADAM strategy [62] for the NN.

7.1.1 Benchmark Problems

The first problem studied is the poisson equation to model heat conduction with the
setup in Figure 6a selected from [63]. For this problem, we set k0 = 1m2s−1, αT = 0.01,
f = 0.01Ks−1, use homogenous Dirichlet and Neumann conditions and use a mesh of
95 × 95 with a 0.4 volume fraction. For the NN, we set the number of convolutional
layers to 5, NΘ = 64, w = (12, 12, 24, 46, 96, 96), l = (12, 12, 24, 46, 96, 96) and c =
(16, 128, 64, 32, 16, 1).

The second problem studied is the typical MBB problem described in [4] with the setup
as in Figure 6b. For this problem, we set ν = 0.3, E = 1Pa, αd = 0.001 and F = 1N and
use a mesh of 287 × 95 with a 0.4 volume fraction. We use the same network as in the
poisson problem but set w = (36, 36, 64, 128, 256, 256)
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Algorithm 1 Backwards Pass
Initialize dJ

dJ
← 1

Extract φK ∈ RΣφ, uK ∈ RΣu from φ,u ∀K ∈ Th.
for K ∈ Th do

∂J
∂u

K ← ∇F
u J(uK , φK)

∂J
∂φ

K ← ∇F
φ J(uK , φK)

end for
Assemble the gradients ∂J

∂u
∈ RNu and ∂J

∂φ
∈ RN

Assemble the sparse jacobian associated with the residual ∂R
∂u
∈ RNu,Nu

Solve the adjoint equation ∂R
∂u
λ = ∂J

∂u
for λ ∈ RNu

Extract λK ∈ RΣu from λ ∀K ∈ Th
for K ∈ Th do

∂J
∂u

∂u
∂φ

K ← ∇F
u R(uK , λK , φK)

end for
Assemble the gradient ∂J

∂u
∂u
∂φ
∈ RN

dJ
dφ
← ∂J

∂φ
+ ∂J

∂u
∂u
∂φ

Compute the vector-jacobian-products:
∂J
∂b
← dJ

dφ
∇R

b φ(φs(3), b)
∂J
∂φ
← dJ

dφ
∇R

φφ(φs(3), b)
Compute the gradients:
∂V
∂φ
← ∇R

uV (φs(3), b)
∂V
∂b
← ∇F

u V (φs(3), b)
dJ

dφs(3)
← ∂J

∂φs(3)
− ∂J

∂b
∂V
∂b

−1 ∂V
∂φs(3)

Assemble the sparse jacobian associated with the residual ∂Rs

∂φs(3)
∈ RN,N

Solve the adjoint equation ∂Rs

∂φs(3)
λs = ∂J

∂φs(3)
for λs ∈ RN

for K ∈ Th do
dRs

dφf(2)

K ← ∇F
φf(2)

Rs(φ
K
s(3), λ

K
s , φ

K
f(2))

end for
Assemble the gradient dJ

dφf(2)
∈ RN

Compute the vector-jacobian-products:
dJ
dϕ
← dJ

dφf(2)
∇R

ϕ (φf(2)(ϕ))
dJ
dp
← dJ

dϕ
∇R

p (N(p))
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Ω

ΓN

ΓD

ΓD

ΓN

(a) Heat conduction problem setup. The
top and left sides ΓD are given a Dirichlet
condition and the bottom and left sides ΓN

are given a Neumann condition.

Ω

F

(b) The right half of the MBB problem
exploiting symmetry. The roller supports
provide vertical restraint on the left-hand
side and horizontal restraint in the bot-
tom right corner. A downward force F is
prescribed on the top left corner.

Figure 6: Benchmark problems

7.1.2 Optimized Structures

To compare the SIMP and LS results, the optimized density is converted to a LS by taking
the 0.5 isosurface of the density and recomputing the objective function value.

The optimized geometries using the various methods are seen in Figure 7. In all cases, the
neural parameterization results in more regular geometries. The pixel-based methods could
be regularized by augmenting the objective function with a penalization term although
this would require manual tuning of a penalization parameter and may have an impact on
the convergence. Simplistic structures could also be obtained for the pixel-based cases by
controlling the filter radius and mesh resolution although this would prevent fine-scale
structure. The NN-LS method instead allows for fine-scale features resolved in the final
layer of the network but still produces performant regular geometries as the multi-scale
influence of the parameters in the neural parameterization encourages globally performant
structures to emerge. The use of the NN is also seen to suppress numerical artifacts
observed in the pixel-LS solutions. For the MBB problem, the compliance measurements
for all methods fall within a few percent of each other. For the heat conduction problem,
however, the NN-LS method has the best performance by a fair amount followed by the
NN-SIMP baseline. The regular geometries produced by the NNs in these cases outperform
their pixel counterparts by a significant amount in both the LS and SIMP cases. The
U-Net here seems able to find better minima because of its ability to focus on larger scale
structure while the pixel-based parameterization makes improvements locally by adding
finer scale branches to the geometry.

7.1.3 Convergence Plots

The convergence of the methods is plotted for the heat conduction and MBB problems in
Figure 8. Since the use of the word iteration in the context of optimization is somewhat
ambiguous, we plot the compliance against the number of objective function value calls
for the process. For the ADAM and MMA optimizers, the ratio of function and gradient
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NN-LS Pixel-LS NN-SIMP Pixel-SIMP

Heat

0.0% 20.3% 5.8% 15.7%

MBB

2.6% 1.7% 0.2% 0.0%
Figure 7: Optimized geometries for the various methods. The percentage under each
geometry represents its performance relative to the best performing geometry in the row
as measured by the objective function.

calls is 1:1. To compare the SIMP and LS methods against each other, we bias the SIMP
method using the optimized structures converted LS once again. The bias is computed
as the difference between the SIMP method final objective value using the interpolated
material and the SIMP method final objective value using the converted LS. This bias is
applied to all of the series data in Figures 8 for the SIMP methods.

For the heat conduction problem in Figure 8a, the pixel-SIMP method converges the
fastest, albeit to an inferior solution. The rest of the methods converge at similar rates.
For the MBB problem in Figure 8b, the SIMP methods converge much faster than the LS
methods although the NN-SIMP method jumps out of the minimum at later iterations
and stabilizes later on.

7.2 Beam Support Design
The design of a beam support in a fluid channel is optimized in this section with the setup
in [64]. The goal is to demonstrate the generality of the method which is shown here by
its capacity to solve a multiphysics problem with complex boundary conditions. Density
methods do not extend naturally to handle such problems and are faced with difficulty in
obtaining accurate coupling between the fluid and structure since the representation of
the interface is spread across cells in the vicinity of the boundary.

The problem setup is seen in Figure 9. For this problem, we set the fluid parameters as
µ = 1m2s−1 and αu = 2.5µ/0.012 and use a parabolic velocity profile on the inlet with an
average velocity of 0.01ms−1. For the structural parameters, we set E = 1Pa and ν = 0.3
and use a 0.45 volume fraction. We use the same network as in the poisson problem but
set w = (12, 12, 24, 46, 96, 96) and l = (24, 24, 48, 96, 192, 192). The optimized geometry
for problem is seen in Figure 10.

8 CONCLUSION
Here we propose a neural LS method as a means of coupling convolutional NNs and the
unfitted LS method. The neural parameterization provides more regular geometries and
similar, in some cases better, performance compared to the well known SIMP method
of TO and the pixel-based counterpart LS method. The neural parameterization learns
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Figure 8: Convergence plot comparison for the benchmark problems. The objective value
at each objective function call is plotted.

Ωout

ΩD

ΩD
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Ωin

u

ΓN

Figure 9: The beam support problem setup. An inlet velocity is prescribed on the left
side, a homogenous Dirichlet condition on the top and bottom walls and a homogenous
Neumann condition on the right wall ΩN . The design region supporting the beam in light
grey can be either fluid or solid. The solid domain Ωin is composed of the dark grey beam
and the solid part of the design region. The fluid region Ωout is composed of the remainder
of the channel, including the non-solid part of the design region.
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Figure 10: Optimized geometry for the beam support problem. Streamlines are plotted
to represent the velocity field and pressure is indicated in the legend.
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features at multiple scales during the optimization allowing for the emergence of regular
structures whilst maintaining performance. The method takes longer to converge than the
SIMP method and may not be suitable for simple problems such as those in linear elasticity.
In this case, the network can be used in conjunction with the SIMP method. In contrast
to SIMP, however, the method extends naturally to interface multiphysics problems and is
more suitable in the general case. It should be noted that in our approach, the expressivity
of geometries for the neural parameterization is the same as pixel counterpart methods since
we use the same space V 1

h in all cases to describe the geometry. A direction for development
in the future would be to relax this constraint and also allow for the NN to control the
space in which it expresses itself, potentially allowing for more efficient expressions of
better topologies. Further investigation into architecture design and optimization strategy
may also lead to a greater and more general improvement in performance.

9 REPLICATION OF RESULTS
All the codes being used in this paper are distributed as open source software. For
reproducibility purposes, the implementation of the proposed TO methodology as well as
the drivers being used to compare the different numerical methods are publicly available
in the following repository: https://github.com/ConnorMallon/NLSTO
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Abstract The conventional uniform Cellular Automata (CA) approach requires identical 

uniform cells (all cells must have the same number of neighbouring nodes) for design 

optimization of truss structures. As in CA every node of a truss structure represents a cell 

(one-to-one relationship between nodes and cells), conventional CA has difficulties to 

address nodes located on the boundaries and also to consider the position of the nodes as 

design variable for layout optimization. In this study, a modified non-uniform Cellular 

Automata (CA) algorithm for the optimal topology, sizing, and layout design of truss structures 

has been proposed. The proposed approach builds upon the success of our previous study that 

utilized non-uniform CA for a sizing and topology optimization of truss structures under stress 

and displacement constraints. Specifically, the new algorithm incorporates the Fully Stressed 

Design (FSD) method and the distribution of strain energy to identify optimal cell coordinates. 

By considering simultaneous sizing, topology and layout optimization, the proposed non-

uniform CA algorithm can effectively minimize the weight of truss structures subjected to 

displacement and stress constraints. The efficacy and accuracy of this approach are 

demonstrated through its successful application to various benchmark truss design problems.  

Keywords: Non-uniform Cellular Automata, Sizing, topology and layout Design Optimization, 

Truss Structures, Stress and Displacement Constraints 

 

1. INTRODUCTION 

Optimizing truss structures involves finding the best connection, member sizes, and shape to 

minimize weight and cost while improving strength and stability. Various methods, including 

mathematical programming, convex approximation, fully stressed design (FSD), and 

metaheuristic techniques, have been used to optimize sizing and layout variables. Single-level 

methods simultaneously consider these variables, while bi-level methods solve for joint 

coordinates and cross-sectional areas separately. The present study proposes a non-uniform 

cellular automata (CA) algorithm for truss optimization that minimizes strain energy and 

redistributes it evenly within the structure. Cross-sectional areas and node coordinates are 

optimized separately using the FSD approach in conjunction with a strain energy criterion. An 

alternating procedure couples these variables until the optimal solution is found. 
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2. PROBLEM FORMULATION 

This study aims to optimize the topology, sizing, and layout of a structure to minimize the 

weight of a truss structure under stress and displacement constraints. The optimization problem 

can be formally formulated as follows: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑊(𝑃) = ∑ 𝜌𝑗𝐴𝑗𝐿𝑗
𝑚
𝑗=1                                                  (1a) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝐾𝑢 = 𝑓                                                                      (1b) 

| 𝜎𝑗| < 𝜎𝑗 ,        𝑗 = 1,2, ⋯ , 𝑚                                       (1c) 

|𝑢𝑖| < �̅�𝑖 ,        𝑖 = 1,2, ⋯ , 𝑘                                        (1d) 

                                        �̅�𝑙  <   𝐴𝑗 < �̅�𝑢 ,        𝑗 = 1,2, ⋯ , 𝑚                                   (1e) 

|𝑥𝑖| < �̅�𝑖 ,        𝑖 = 1,2, ⋯ , 𝑘                                        (1d) 

 

where m is the total number of bar members in the structure. K is the stiffness matrix, u is the 

vector of nodal displacements, f is the vector of nodal forces, and Aj are the cross-sectional area 

of the truss members. Constraint (1b) represents the equilibrium condition, while constraints 

(1c)-(1e) represent stress, displacement, and side constraints. Allowable stresses and 

displacements are denoted by 𝜎𝑗 and �̅�𝑖, respectively. For buckling constraints, 𝜎𝑗 is set to the 

smallest value between allowable compressive stress and Euler buckling stress. The upper and 

lower bounds on the cross-sectional areas are �̅�𝑢 and �̅�𝑙, respectively, and k states the number 

of displacement constraints. To ensure kinematic stability, a very small positive value is used 

as the lower bound of the cross-sectional area. Topology optimization is achieved by removing 

members with a cross-sectional area equal to their lower bound in the final optimal 

configuration. 

3. NON-UNIFORM CELLULAR AUTOMATA 

This study extends a prior approach used for topology and sizing optimization of truss structures 

by adding layout optimization using the non-uniform Cellular Automata (CA) algorithm [1]. 

Non-identical cells, consisting of a center node and members linking it to nearby nodes, are 

used. Fig. 1(a) shows a two-dimensional truss structure represented by the proposed non-

uniform CA, while Fig. 1(b) displays a boundary unit cell. The algorithm optimizes node 

positions and member cross-sectional areas to find the minimum weight structure. 

 

 
Figure 1. (a) Non-uniform CA representation of a two-dimensional truss structure, (b) Representation of the 

non-uniform unit cell located on the boundary 

 

Analysis update rules: 

After each design solution, equilibrium at the cell level is verified by applying analysis update 

rules. The field variables {𝑢𝑖 , 𝑣𝑖} and {𝐹𝑥𝑖, 𝐹𝑦𝑖} are determined by minimizing the potential 
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energy of the cell [1]. The equilibrium equations for cell i are expressed as: 

 

 

 

∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

cos2 𝜃𝑗 𝑢𝑖 + ∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

sin 𝜃𝑗 cos 𝜃𝑗 𝑣𝑖  = 𝐹𝑥𝑖 + ∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

(cos2 𝜃𝑗 𝑢𝑗 + sin 𝜃𝑗 cos 𝜃𝑗 𝑣𝑗) 

    (2) 

∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

sin 𝜃𝑗 cos 𝜃𝑗 𝑢𝑖 +  ∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

sin2 𝜃𝑗 𝑣𝑖  = 𝐹𝑦𝑖 + ∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

(sin 𝜃𝑗 cos 𝜃𝑗 𝑢𝑗 + sin2 𝜃𝑗 𝑣𝑗) 

 
Design update rules: 

To optimize the sizing variables, this study employs the Fully Stressed Design approach (FSD) 

[2]. Additionally, FSD is utilized along with a strain energy criterion to optimize the layout 

variables. It is assumed that in an optimally designed structure, the strain energy is uniformly 

distributed, and all members should attain their stress limit. Consequently, the update rule for 

the member's cross-sectional areas is expressed as: 

𝐴𝑗
𝑡+1 = 𝐴𝑗

𝑡 |𝜎𝑗
𝑡|

�̅�𝑗
                                                     (3) 

The total strain energy of the structure and the individual cell's contribution to the total strain 

energy may also be written as: 

𝑈𝑇 = ∑
𝜎𝑗 

2𝐿𝑗𝐴𝑗

2𝐸𝑗

𝑚
𝑗=1                                                        (4) 

𝑈𝑐
𝑖 =

1

2
∑

𝜎𝑗 
2𝐿𝑗𝐴𝑗

2𝐸𝑗

𝑁
𝑗=1                                                       (5) 

Here m represents the total number of members in the structure, and N is the total number of 

members within a specific cell. The ½ factor is introduced for consistency so that the sum of 

cells’ strain energy is equal to 𝑈𝑇. Assuming all members are at their maximum stress, 

minimizing the total strain energy by shifting the nodes is equivalent to minimizing the total 

weight. Hence, the change in total weight and total strain energy due to a shift in the 

coordinate 𝑥𝑖 of a given node can be expressed as: 

 
𝑑𝑊𝑇

𝑑𝑥𝑖
= 𝜌

𝑑

𝑑𝑥𝑖
(∑ 𝐿𝑗𝐴𝑗

𝑚
𝑗=1 )                                                       (6) 

𝑑𝑈𝑇

𝑑𝑥𝑖
=

𝜎 ̅
2

2𝐸

𝑑

𝑑𝑥𝑖
(∑ 𝐿𝑗𝐴𝑗

𝑚
𝑗=1 ) =

𝜎 ̅
2

2𝜌𝐸

𝑑𝑊𝑇

𝑑𝑥𝑖
                                              (7) 

 

Thus, to minimize the total weight of the structure, the nodes are shifted in the direction that 

minimizes the total strain energy. FSD is applied after each change in joint coordinates to ensure 

the optimization moves towards minimizing the total weight (descent direction). The algorithm 

calculates the shift ∆𝑥𝑖 of a given node (cell) i using the following equation: 

     ∆𝑥𝑖 = −𝑠𝑖𝑔𝑛 (
𝑑𝑈𝑇

𝑑𝑥𝑖
) 𝑠𝑖𝑔𝑛 (

 (∆𝑈𝑐
𝑖)

𝑡

( ∆𝑈𝑐
𝑖)

0) 𝑚𝑖𝑛 (𝛼 |
(∆𝑈𝑐

𝑖)
𝑡

(
𝑑𝑈𝑐
𝑑𝑥𝑖

)
𝑡| , 𝛽𝐿𝑚𝑎𝑥)                        (8) 

where 

   (∆𝑈𝑐
𝑖)

𝑡
= (𝑈𝑐

𝑖)
𝑡

− �̅�𝑐
𝑡
                                                        (9) 

 

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

312



Mohamed El Bouzouiki, Ramin Sedaghati and Ion Stiharu 

Constant parameters 𝛼 and 𝛽 which determine the extent of the displacement in the design 

space, play a crucial role in the algorithm's convergence. 

4. TEST PROBLMS AND OPTIMIZATION RESULTS  

An-object oriented has been effectively used to implement the proposed bi-level non-uniform CA 

approach on various benchmark truss structures to verify its efficiency and accuracy. Both cross-

sectional areas and coordinates of nodes are considered as design variables for sizing and layout 

optimization. It is noted that the topology optimization has been indirectly implemented by 

removing truss members who cross-sectional areas have converged to lower bounds which are set 

to very small values.   

4.1. Problem 2: 15-Member, 8-Node Truss Structure 

The 15-bar, 8-node planar truss test problem depicted in Fig. 2(a) was previously solved by 

Rahami et al. [3] using a single-level Genetic Algorithm (GA) and by Gholizadeh [4] using a 

hybrid bi-level optimization algorithm that combines Cellular Automata (CA) with Particle 

Swarm Optimization (PSO). Material properties and problem parameters are available in [3,4]. 

 

 

(a)                                                                             (b)  

Figure 2. (a) 15-bar, 8-node truss structure and (b) the Optimized geometry. 

 

The proposed non-uniform CA approach generated an optimized layout as shown in Fig. 2(b) 

which is comparable to those reported by other methods. Rahami et al. [3] used a single-level 

GA and found an optimal weight of 76.6854 lb after 8000 structural analyses, while Gholizadeh 

[4] used a hybrid bi-level optimization algorithm combining CA with PSO, and obtained an 

optimal weight of 72.5143 lb with 4500 structural analyses. The proposed methodology 

achieved a total optimal weight of 69.176 lb, after only 240 structural analyses. It is important 

to note that none of the constraints were violated during the optimization process.  

4.2. Test Problem 5: 77-bar, 40-node truss bridge 

The problem involves a 77-member, 40-node bridge structure depicted in Fig. 3. The bridge is 

6000 in long and has 21 evenly spaced panel joints at intervals of 300 in. Flager et al. [5] solved 

this problem using a single geometry variable - the y-coordinate of the top joints of the truss - 

and discrete sizing variables selected from a list of W-shape profiles. Forces acting on the bridge 

include self-weight and loads specified in [5]. 
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Figure 2 77-bar, 40-node truss bridge 

 

 

 
Figure 4.  Optimized truss for the 77-bar space truss 

The optimal layout of the minimum weight truss structure is depicted in Fig. 4. Flager et al. [5] 

performed 7553 structural analyses to obtain an overall weight of 511,037 lb, while the 

proposed method achieved a much lower weight of 320038 lb after 5707 structural analyses 

without violating any stress or displacement constraints. 

5. CONCLUSION 

This study proposes a bi-level algorithm that utilizes a non-uniform cellular automata 

method to simultaneously optimize the sizing, topology, and layout of truss structures under 

stress and displacement constraints. By coupling sizing and layout in an alternating 

procedure, the proposed design optimization methodology was successfully implemented 

in various bench mark problem. The algorithm's ability to handle complex problems and 

obtain optimal solutions with fewer structural analyses contributes to its superiority.  
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Abstract. Continuum Sensitivity Analysis (CSA) is an approach for calculating ana-
lytic design derivatives. Spatial derivatives of the response, at least on the boundary, are
needed to formulate CSA for shape design variables that alter the shape of a structure.
Inaccurate spatial derivatives on the boundaries has historically hampered the use of the
so-called boundary velocity form of shape CSA. Spatial Gradient Reconstruction (SGR)
has proven to be a remedy for inaccurate spatial derivatives of structural response, at least
for displacements and their derivatives; however, SGR for stresses on the boundary where
surface tractions may be applied, continues to be problematic. Here stress-based SGR, used
in the literature for stress error estimation, is developed for shape CSA. Stress-based SGR
with and without enforcement of traction boundary conditions are compared with stresses
and stress gradients recovered from displacement-based SGR. Traction enforcement, to-
gether with equilibrium constraints, is found here to improve stress-based SGR, making it
more accurate than without traction enforcement and more accurate than stress gradients
recovered from displacement-based SGR.

Keywords: continuum sensitivity, shape derivatives, sensitivity analysis, two-and three-
dimensional structural analysis, nonintrusive
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1 INTRODUCTION

Continuum Sensitivity Analysis (CSA) has been developed to compute gradients for
shape optimization of structural response [1–4] and fluid response [5–8]. The motivation
for using CSA for shape sensitivity is twofold: (a) gradients are computed from analytic
expressions and are therefore more accurate and efficient than finite difference, and (b)
mesh sensitivity is avoided, which is a drawback of the discrete analytic shape sensitivity
approach.

As will be shown in the review of CSA, the boundary-velocity formulation involving
local shape derivatives depends heavily upon spatial derivatives of the response from the
structural analysis solution. Often those very derivatives of the numerical solution are of
poor quality; however, a Spatial Gradient Reconstruction (SGR) method has been shown
in the literature [9–13] to overcome this challenge. Nevertheless, this SGR method was
based on recovering spatial derivatives from displacements of the solution. SGR based on
reconstruction from stresses of the solution offers an avenue for further improvement for
shape CSA of structures where tractions are applied as loads on boundary surfaces that
change shape. Zienkiewicz and Zhu’s superconvergent patch recovery (SPR) method [14],
heretofore has been used for SGR; however, the enhancement of SPR developed by Wiberg
et al., whereby traction boundary conditions (and static equilibrium) are added the least-
squares solution for SPR [15], is a promising approach for SGR used for CSA. Babuska
et al. [16] concluded that those “enhancements can lead to a significant deterioration of
the asymptotic robustness of the estimator.” However, Babuska’s measure of robustness
was an energy norm of the solution for the displacement or stress field, whereas for CSA
spatial derivatives of those fields need to be reconstructed by SGR. Therefore, we study
here the accuracy of SGR based on Wiberg’s enhanced SPR for those derivative terms it
provides for CSA sensitivity loads.

After reviewing the governing structural equations, their finite element solution, and
conventional discrete sensitivity analysis in Section 2, the boundary-velocity (local) con-
tinuum sensitivity equations for CSA are summarized in Section 3. The SGR used with
CSA, which is the subject of the numerical studies in this paper, is reviewed in Section 4.
A two-dimensional cantilever beam example is presented in Section 5. Convergence stud-
ies for SGR of stress components of that Timoshenko beam and their spatial derivatives,
presented in Section 6 and the Appendices, demonstrate that stress-based SGR with trac-
tion enforcement improves the accuracy of recovered stresses and their spatial derivatives.

2 GOVERNING STRUCTURAL ANALYSIS EQUATIONS

2.1 Continuous Domain Equations and Boundary Conditions

The partial differential equation governing structural response can be written com-
pactly as

R (u, t; b) = A (u, L (u))− f (x, t; b) = 0 on Ω, (1)

with the corresponding boundary conditions (BCs)

B (u, L (u)) = g (x, t; b) on Γ (b) , (2)

where the vector of dependent (state) variables u(x, t; b) are functions of the spatial and
temporal independent coordinates, x and t, respectively and depend implicitly on design
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variable b. Since the design variable b changes the shape of the domain, the boundary
can also be represented as Γ (b). The linear differential operator L has terms such as{

∂
∂t
, ∂
∂x
, ∂
∂y
, ∂2

∂x2 ,
∂2

∂y2
, . . .

}
that appear in the governing equations or boundary conditions.

A and B are algebraic or integral operators acting on u and L (u), possibly in a nonlinear
fashion. The distributed body force applied on the system is given by f in (Eq.(1)), and
the general BCs in (Eq.(2)) can be either Dirichlet (essential or geometric) such as a
prescribed value

Be (u) ≡ u|Γe
= ge ≡ ū (3)

on the boundary Γe, or they may involve a differential operator for Neumann (nonessential
or natural) BCs such that

Bn (L (u))|Γn
= matgn (4)

on the boundary Γn.

2.2 Finite Element Discretization of the Structural Analysis Equations

The continuous partial differential Eqs.(1)) for a structure commonly are integrated by
energy methods or weighted residual methods to create a discrete finite element model
(FEM), [K] {u} = {F }, that can be solved to obtain the structural response {u}. This
is the response analysis. The discrete FEM equations are partitioned as

[
Kee Kef

Kfe Kff

]{
ue

uf

}
=

{
F e

F f

}
. (5)

Here the notation {u} stands for a discretized version of the continuous solution u on the
domain Ω. The vector {ue} corresponds to the degrees of freedom that are constrained
by essential (or geometric) boundary conditions on Γe. The vector {uf} consists of the
degrees of freedom {un} constrained by the natural boundary conditions on the boundary
Γn and the unconstrained degrees of freedom {uΩ} in the interior of the domain Ω. The
partitioned Eq.(5) is re-arranged to move the prescribed terms involving essential and
non-essential boundary conditions to the right side to represent the system of equations
in abbreviated fashion to be solved for the primary unknowns, the free displacements,
{u} = {uf}

[K]{u} = {F } (6)

where {F } = {F f −Kfeue}.

2.3 Discrete Sensitivity Analysis (DSA)

The direct method of Discrete Sensitivity Analysis (DSA) differentiates Eq.(6) directly
to solve for the displacement sensitivity u̇

{u̇} = [K]−1(Ḟ − [K̇]{u}) = [K]−1{P } (7)

where {P } ≡ {Ḟ } − [K̇]{u} = {Ḟ f} − [K̇fe]{ue} − [Kfe]{u̇e} − [K̇ff ]{uf} is known

as the discrete sensitivity pseudo-load and the notation ˙( ) denotes the total (material)
derivative with respect to the shape design variable, b. Since the stiffness matrix [K]
depends upon nodal coordinates that are a function of the shape design variable, the
stiffness sensitivity [K̇] necessarily involves mesh sensitivity, i.e., how spatial coordinates
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change with a design variable throughout the domain Ω. Mesh sensitivity is often found
by solving an auxiliary problem, say by the pseudo-solid method [17]. Boundary-Velocity
CSA avoids mesh sensitivity analysis.

3 CONTINUUM SENSITIVITY ANALYSIS (CSA)

3.1 Differentiation of the Continuous Equations

CSA is a method to obtain the derivative of the response u(x; b) with respect to design
parameter b, possibly at all points in the domain. The response depends on the spatial
variable x and it may have an explicit or implicit dependence on the shape variable b,
as indicated by the semicolon. CSA is based on the philosophy of “differentiate and
then discretize.” First, Eqs.(1)) and ((2)) are differentiated with respect to b, leading
to the associated Continuum Sensitivity Equations (CSEs), which are then discretized.
The resulting discrete CSEs are then solved in a similar fashion as the original response
equations, e.g. by Finite Element Analysis (FEA).

Based on the type of differentiation, CSA is categorized as either local form CSA, also
known as boundary-velocity form, or total (material derivative) form CSA, also known
as domain velocity form [18]. Regardless of the form, just like DSA, the resulting CSEs
are always a linear in terms of sensitivity variable u′, even if the governing Eqs.(1)) are
nonlinear. Also, regardless of the form, since the material boundary changes due to a
change in the shape design parameter b, the CSA boundary conditions are obtained by
total or material differentiation of the original boundary conditions ((2)).

Differentiating Eqs.(1)) and their boundary conditions ((2)) gives the CSEs

∂R

∂b
= Ab (u, L (u′))− f ′ (x, t; b) = 0 on Ω, (8)

and their corresponding sensitivity boundary conditions.

Bb (u, L(u′)) = gb(x, t; b) ⇒
{Be,b (u, L(u′))
Bn,b (u, L(u′))

}
=

{
ge,b(x, t; b)
gn,b(x, t; b)

}
on Γ =

{
Γe

Γn

}
,

(9)
The similarity of Eqs.(8) and (9) to Eqs.(1) and (2) motivates the use of the same numer-
ical solution method and the same mesh for the discretized form. The notation ge,b and
gn,b is used to distinguish prescribed essential or natural boundary conditions, respec-
tively, for the sensitivity boundary conditions and loads associated with a shape design
variable b. If the governing Eqs.(1) are linear, then Ab = A and Bb = B. If the governing
Eqs. (1) are nonlinear, the solution u can be obtained from the analysis solution of Eq.(1)
for use in Eqs.(8)) and (9). The load or forcing terms for CSA appear at two places:
Body loads f ′ and sensitivity boundary loads gb. Body loads are often zero for a shape
variable, unless the body loads f explicitly or implicitly depend on the shape variable b.
Sensitivity boundary loads arise due to the non-homogeneous CSA boundary conditions
(9) and are typically the main forcing terms that drive the local derivatives u′. As shown
in Eq.(9), the term gb includes spatial gradients ∇xu of the response. Thus, the accuracy
of the spatial gradients ∇xu directly affects the accuracy of the local derivatives u′. Here
u′ = ∂u/∂b is the local derivative of the response.

Solution of the local CSEs yields the local derivative, u′ = ∂u/∂b. The total or
material derivative u̇ = Du/Db is then obtained by adding the convective term to the
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local derivative.

Du

Db
=
∂u

∂b
+

3∑

i=1

∂u

∂xi

∂xi
∂b

⇐⇒ u̇ = u′ + ∇xu · V (10)

The convective term consists of the spatial gradients of the response ∇xu = ∂u/∂x, and
the geometric sensitivity or design velocity V(x) = ∂x/∂b which depends on the geometric
parametrization of the domain. For value design parameters that are independent of the
domain shape, the convective term goes to zero, because the design velocity is zero, and so
the material derivative is same as the local derivative. However, for shape design variables,
the design velocity and hence the convective term are not zero. The next step involves
discretization of the domain and CSA numerical solution on the discretized domain.

3.2 Direct Formulation of CSA

A direct formulation of CSA is useful when derivatives of many performance measures
is required with respect to a modest number of design variables, which is often the case for
shape design variables. Discretization of (8) in a similar fashion as the FEA in Section 2.2,
leading to a similar set of discrete CSEs, which for Boundary-Velocity CSA may be written
as

[K] {u′}i = {F ′}i . (11)

The stiffness matrix [K] for the discretized CSEs (11) is same as the stiffness matrix of
the primary analysis for linear cases or same as the converged tangent stiffness matrix
for nonlinear cases [5, 10, 19]. As stated earlier, although the original system may be
nonlinear with respect to the state variables u, the CSEs are always linear with respect
to the sensitivity variables u′. The vector {u′}i = ∂ {u} /∂bi denotes the solution for local

derivatives, and bi is one of the nb design variables from the set {b} = [b1, b2, ..., bnb
]T .

Following the same scheme as in Section 2.2, Eq.(11)) can be partitioned as {u′} =
{{u′}Te , {u′}Tf }T , where {u′}e represents the known local derivatives of the constrained
degrees of freedom and {u′}f represents the unknown (free) local derivatives. Subscript i
represents derivatives with respect to design variable bi for i = 1, 2, ..., nb. The prescribed
{u′}e are obtained from the CSA essential boundary conditions Eq.(9) discretized at given
BC locations on Γe

u′|Γe
= ġe − ∇xue · V(x)|Γe

. (12)

The effect of perturbing a boundary is incorporated through design velocity V(x) in the
last term multiplying the displacement spatial derivative whose accurate computation is
the subject of this paper.

The sensitivity load on the right side of Eq.(11) includes a partition for the sensitivity
of the natural boundary condition loads,

{
F ′

n

}
i
. The corresponding CSA BC can be

stated as
Bb (L (u′))|Γn

= ġn (x; b)− ∇x (Bn (L (u))) · V(x)|Γn
. (13)

Here Bn (L (u)) represents the secondary variables such as forces and stresses that can
be output from the structural solver Cross and Canfield [10] first showed that the loads{
F ′

n

}
i

can be calculated based on the first-order spatial gradients of these secondary
variables, rather than from the higher-order derivatives of the primary variables such as
displacements. The best approach to accurately compute these spatial gradients from the
original FEA results is considered in the next section.
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4 SPATIAL GRADIENT RECONSTRUCTION (SGR)

The CSA forcing terms consist of the body loads f ′, as given in Eq.(9), and the loads
arising from the CSA boundary conditions gb. Typically the loads f ′ can be derived
analytically, since the analysis body loads f are known. However, gb requires calculation
of the spatial gradient ∇xu or ∇x (Bn (L (u))) as shown in Eqs.(12) and (13)). After
discretization, this leads to the load terms

{
F ′

n

}
i
and

{
u′

e

}
i
. Essentially, spatial gradients

of analysis primary responses such as displacements, or of secondary responses such as
forces or stresses, at the boundary Γ are required to be approximated from the analysis
solution to obtain loads for the sensitivity analysis. Finally, after the solution to local
derivatives is obtained, spatial gradients of the responses are required to calculate the
convective term ∇xu ·V which is added to get the total derivatives according to Eq. (10).
In summary, accuracy of the local and total derivatives obtained using CSA is significantly
affected by the accuracy of the boundary spatial gradients [7]. Elsewhere we have shown
that reliance upon low-order element shape functions limits the accuracy of these spatial
gradients thus limiting the accuracy of the local and effectively total derivatives [9]. As
a remedy, Cross and Canfield [10, 11, 12] proposed the spatial gradient reconstruction
(SGR), which is based on the least-squares patch-recovery approach used by [14] and
Duvigneau and Pelletier [7]. The difference between the approaches is that SGR is used
to reconstruct first-order gradients of the natural boundary conditions directly, instead
of reconstructing the higher-order gradients that appear in them. As an example, for a
second-order SGR, a least-squares solution for the derivatives of the following second-order
Taylor series expansion is used for two-dimensional Cartesian coordinates.

ϕ(x+ ∆x, y + ∆y) = ϕ(x, y, z) + ϕ,x∆x+ ϕ,y∆y

+
1

2
ϕ,xx (∆x)2 +

1

2
ϕ,yy (∆y)2

+ ϕ,xy∆x∆y

= a0 + a1∆x+ a2∆y + a3∆x∆y + a4 (∆x)2 + a5 (∆y)2

(14)

Estimated field variable ϕ could be a scalar such as a component of displacement or stress
and ϕ,x, ϕ,y, ϕ,z are the spatial gradients that are computed using linear regression to
match the finite element nodal displacements or element stresses in a least-squares sense.
For stress approximation, ϕ(x, y) ≡ σP (x, y) where σP is one of the stress components,
σx, σy, or τxy recovered over a patch, P , Eq.(14) may be written in matrix-vector form as

σP ∼= [P]{a} (15)

Motivated by the oft-cited observation that “the quality of the recovered derivatives is
the inferior at boundary points compared to interior points,” [15] Wiberg et al. include in
the weighted residual formulation for the regression of the coefficients for (14) the residual
error for stress components and equilibrium equations evaluated at element Gauss points,
as well as the residual error for applied tractions evaluated at nodes on the element exterior
boundary. A complication of this enhanced residual is that it couples the solution for
SGR coefficients of the stress components. Whereas Wiberg et al. present accuracy of
patch recovery for the stress field, in CSA we are interested in the recovery of the spatial
gradient of the stress field, which appear in the CSA boundary conditions that drive the
solution of the sensitivity equations. Consequently, we present in Section 6 results that
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demonstrate accuracy of not only stresses, but more importantly the recovery of stress
spatial derivatives.

The SGR coefficients a in Eq.(15) may be determined by weighted least-squares mini-
mization of residual error between the patch stress σP and the element stress σ∗ evaluated
at nG Gauss points

Rσ =

nG∑

G=1

wG [σP (xG, yG)− σ∗(xG, yG)] (16)

The residual weighting factors wG in Eq.(16) are taken as inversely proportional to the
distance from the Gauss point to the Taylor series expansion point. Minimizing the
residual (16) alone allows uncoupled recovery of each stress component independently.

Minimizing (16) together with residual error between the patch stress vector compo-
nents and nT tractions—normal Φn and tangential (shear) Φt stress components—couples
the stress components recovery

Rn =

nT∑

m=1

wm [(σn(xm, ym)− Φn(xm, ym)) + (τt(xm, ym)− Φt(xm, ym))] (17)

due to the surface normal vector n⃗ on the boundary Γn for natural boundary conditions
gn in Eq.(4)

{Φ} =

{
Φn

Φt

}
=

[
σxx τxy
τxy σyy

]{
nx

ny

}
= [σ]P n⃗ =

{
σn
τt

}
(18)

for normal stress σn and shear stress τt, where the traction residual weighting factors wm

in Eq.(17) are taken as an order of magnitude large than the largest wG weighting factor.
Finally, satisfaction of the equilibrium equations, [∂]{σ} + f = 0 for body forces as-

sumed zero, f = 0 may be considered.

[ ∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

]

σxx
σyy
τxy



 =

{
0
0

}
(19)

Whereas Wilberg et al. [15] incorporate Eq.(19) as another contribution to residual er-
ror in their least-squares solution for their SPRE (superconvergent patch recovery with
equilibrium) method for coefficients a, Kvamsdal [20] and Okstad et al. [21] avoided the
residual error of the equilibrium Eqs.(19) by using them as constraint equations to elimi-
nate some of the regression coefficients from Eq.(14), so as to create statically admissible
stress fields that automatically satisfied internal equilibrium (at Gauss points). That
approach was also considered here, which tended to average the residual of the spatial
derivative coefficient that was eliminated with its counterpart that was retained.

For the following coupled second-order stress SGR approximation




σxx
σyy
τsy



 =



a0 a1 a2 a3 a4 a5
b0 b1 b2 b3 b4 b5
c0 c1 c2 c3 c4 c5








∆x
∆y

∆x∆y
(∆x)2

(∆y)2





(20)
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enforcement of Eq.(20) for all x and y in the patch implies that the following coefficients
may be eliminated: a4 = −c3/2, c5 = −a3/2, c2 = −a1, c4 = −b3/2, b5 = −c3/2, and
c1 = −b2.

The advantages of SGR include:

• Spatial gradients ∇xu can be approximated without knowledge of the finite element
formulation or its element shape functions.

• Accuracy of the spatial gradients can be increased by choosing the correct order of
Taylor series for SGR.

• SGR is a post processing step, following the structural analysis, using any black-box
tool, which makes CSA amenable to a nonintrusive implementation.

SGR presented here to approximate the spatial gradients will be used for required CSA
sensitivity loads and material derivative recovery.

SGR results reported in [22] were based on SGR of nodal displacements, whereas new
results presented here were developed with stresses output at element centers. Improve-
ments in accuracy were achieved by incorporating the traction boundary conditions as
additional equations for the least-squares fit to determine the coefficients in Eq.(14), fol-
lowing [15].

5 TIMOSHENKO BEAM ANALYTIC 2D EXAMPLE

Timoshenko and Goodier [23] derived the analytic elasticity solution for bending of
a two-dimensional rectangular cantilever beam loaded with a parabolically distributed
transverse shear force at its free end. That elasticity solution may be differentiated with
respect to its length L and height h as shape parameters to serve as a reference sensitiv-
ity solution to evaluate the accuracy of computational sensitivity analysis. Augarde and
Deeks [24] elucidated the proper boundary conditions to impose when the analytic elas-
ticity solution is used as a benchmark to evaluate convergence of adaptive finite element
models. Here we adopt their reference frame in which the beam is cantilever at x = 0 on
the left with the parabolic load of magnitude P applied downward at x = L on the right,
as shown in Fig. 1. The displacement solution in [24], however, does not correspond to the

Figure 1: Timoshenko two-dimensional cantilever beam coordinate system, dimensions,
and shear load

one in [23] that allows shear deformation. The Airy stress function derivation, found in
[25] in terms of a coordinate system origin at the cantilever root on the left, incorporating
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the shear factor in [24], is used here as follows.

u(x, y) =
P

EI

[(
L− x

2

)
xy +

(
κ− (1 + ν)

h2

4

)
y +

(2 + ν)

6
y3
]

v(x, y) =
−P
EI

[
κx+

Lx2

2
− x3

6
+
ν

2
(L− x)y2

] (21)

where the beam has second area moment of inertia I = bh3

12
for a rectangular cross-section

of unit depth b = 1 for an isotropic material with elastic modulus E, shear modulus,
G = E

2(1+ν)
, Poisson ratio ν, and shear force effect factor κ = EI

kAG
= (1 + ν)h2/4 for

shear area reduction factor k, subject to parabolic transverse shear with total downward
force P . Timoshenko’s original solution corresponds to a shear angle of P/(kAG) at the
root with respect to the horizontal, where he used the shear area reduction factor k = 2/3,
thereby canceling the coefficient of the linear term in y of the middle term on the right
side u(x, y) in Eq.(21). For the numerical results to follow, the parameter values specified
in [24] were used: h=2, L=8, P=2, E=1,000, κ=1.25, and ν=0.25. For these values tip
deflection v(L, 0) = −PL3

3EI
(1 + 3κ/L2) = −0.542, axial normal stress and strain at the top

corner of the root are σxx(0, 1) = 24 and ϵxx(0, 1) = 0.024, transverse normal stress and
strain are σyy(0, 1) = 0 and ϵyy(0, 1) = −0.006, and shear stress and strain at the root
neutral axis are τxy(0, 0) = −1.5 and γxy = −0.00375, respectively. In general, analytical
stresses are 



σxx
σyy
τxy



 =





P (L−x)y
I

0
P (y2−c2)

2I



 (22)

Essential boundary conditions (3) at the root nodes were imposed as enforced dis-
placements in the finite element model for the analysis in accordance with Eqs.(21) at
x = 0.

ge =

{
u(0, y)
v(0, y)

}
=

P

EI

{[
κ− (1 + ν)h

2

4

]
y +

(
2+ν
6

)
y3

−ν
2
Ly2

}
=

{
0.001125y3

−0.003y2

}
(23)

The natural boundary condition is a prescribed traction on the free right end of the beam

gn = [σ] · n = Φ(L, y) (24)

where [σ] is the matrix of stress components and n is the surface normal vector. Parabolic
shear stress traction Φy at x = L was applied at the tip

Φy(L, y) =
3

2

(−P
bh

)[
1−

(y
c

)2]
= 1.5(y2 − 1) (25)

where c = h
2
. Consistent nodal loads were applied at each tip element e node by integrating

Eq.(25) along the free edge on the right end of the beam

{
F e

n

}
=

∫ 1

0

Φy(L, y(η))

{
1− η
η

}
bℓedη (26)
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where ℓe = ye2 − ye1 is the length of the free edge of element e from y-coordinate of the
lower node e1 to the upper node e2. The natural coordinate η ∈ {0, 1} maps the vertical
coordinate y = ye1 + ηℓe of the free edge of the tip elements.

To illustrate the concept of patches used in SGR, two SGR patches are shown on the
left in Fig. 2 as colored elements for the coarsest mesh. The first layer of elements are
colored green, the second layer colored blue, and the third layer colored red. In the mesh
above a 2.5-layer patch at the root neutral axis is shown. The mesh below depicts a
2.5-layer patch at the root bottom corner.

Figure 2: FEM QUAD4 Mesh Convergence for Tip Deflection Error

Differentiation of Eq.(22) with respect to coordinates x and y provides the exact so-
lution for spatial derivatives that will be used to evaluate the accuracy of SGR, where
numerical values at the tip are given here.

∇x{σ} =





∂σxx(x,y)
∂x

∂σyy(x,y)

∂x
∂τxy(x,y)

∂x





=




Py/I

0
0



 (27)

∇y{σ} =





∂σxx(x,y)
∂x

∂σyy(x,y)

∂x
∂τxy(x,y)

∂x





=




P (L− x)/I

0
Py/I



 (28)

Most of these derivatives are zero at the root and tip corners and neutral axis where SGR
results were generated for convergence studies for which absolute true errors were plotted.
Relative true errors were plotted for non-zero values: ∂σxx

∂x
(x, c) = −3, ∂σxx

∂y
(0, y) = 24,

∂τxy
∂y

(L, c) = 3, and ∂τxy
∂y

(L,−c) = −3.

Differentiation of v(x, y) in Eq.(21) evaluated at x = L with respective to beam length
L and height h give the analytical material derivatives of the tip deflection v̇(L, 0)

Dv(L, 0)

DL
=
−P
EI

[
κ+ L2

]
= −0.19575 (29)

Dv(L, 0)

Dh
=

P

EI

L

h

[
κ+ L2

]
= 0.783 (30)
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Likewise, analytic material shape derivatives of stress at the root and tip are

Dσxx(0, c)

DL
=
Pc

I
= 3

Dτxy(0, 0)

DL
= 0

Dσxx(0, c)

Dh
=
−PL
I

= −24
Dτxy(0, 0)

Dh
=

3P

2bh2
= 0.75

(31)

Dσxx(L, c)

DL
=
Pc

I
= 3

Dτxy(L, 0)

DL
= 0

Dσxx(L, c)

Dh
=
−PL
I

= −24
Dτxy(L, 0)

Dh
=

3P

2bh2
= 0.75

(32)

The sensitivity ġe of the geometric boundary condition (23) is non-zero with respect
to length L for the vertical root deflection v(0, y)

ġe,L =
Dge
DL

=

{
Du(0,y)

DL
Dv(0,y)

DL

}
=

{
u̇(0, y)
v̇(0, y)

}
=

P

EI

{
0

−ν
2
y2

}
(33)

By virtue of the chain rule of differentiation for the moment of inertia I and the choice
κ = (1+ν)c2, the total derivative of root deflections with respect to height h is proportional
to ge, the enforced boundary condition (23) of the analysis

ġe,h =
Dge
Dh

=
P

EI

{
0

νL
2h
y2

}
(34)

The material derivative boundary conditions (33) and (34) are defined by user input and
used to impose different enforced displacements for each shape design variable and its
associated design velocity, according to Eq.(12), in the CSA for the local shape derivatives.
Design velocity is not unique. For lengthening the beam, the left end could be moved left,
giving design velocity V1(x, y) = x

L
− 1. In general, the design velocity may depend on

both x and y, but in this case, it depends only on x. Then the local sensitivity boundary
condition (9) at the fixed end on the left for beam length and its design velocity becomes

ge,L1 =

{
u′(0, y)
v′(0, y)

}
=

{
u̇(0, y)−∇u(0, y) · V1(0, y)
v̇(0, y)−∇v(0, y) · V1(0, y)

}
=

P

EI

{
Ly

−(1 + ν)c2

}
=

{
0.024y
−0.00375

}

(35)
The upper component in the vector of Eq.(35) is the convective term that in practice
is approximated by SGR. The lower component in the vector is user input from the
boundary condition defined by Eq.(33). The sensitivity load is zero at the tip, because
the prescribed traction Eq. (25) does not depend on the beam length and the design
velocity is zero at the tip.

Alternatively, the right end could be moved to the right, giving design velocity V2(x, y) =
x
L

. Then, instead of (35), the local sensitivity essential boundary condition on the fixed
end on the left becomes simply the material derivative ġe given by user input of Eq.(33).
A local traction sensitivity load would be defined at the free end on the right as

Bn,L2(u
′) = ∇[σ′]·n = gn,L2 = Φ′

,L2(L, y) = Φ̇,L(L, y)−[σ]ṅ−(∇[σ] · n)·V2(L, y), (36)

which is non-zero due to the convective term, despite that Φ̇,L(L, y) = 0. Here ṅ = 0
because the normal direction of the rectangular boundary surface does not change for
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length or height shape design variable. The sole convective term in Eq.(36), (∇[σ] · n) ·
V2(L), is determined by SGR. From analytic differentiation of Eq.(22), the true value
for traction local derivative with respect the beam lengthening toward the right for this
benchmark is

gn,L2 = Φ′
,L2 =

{
Φ′

x,L2

Φ′
y,L2

}
= − (∇[σ] · n) · V2(L, y) =

{
Py
I

0

}
=

{
3y
0

}
(37)

Whereas the traction for the analysis problem has only shear force given by Eq.(25), the
sensitivity traction given by Eq.(37) involves only normal axial force.

The design velocity for increasing the height could be expressed as V3(x, y) = y
c
. Multi-

plying it by the gradient of Eq.(21), and substituting this convective product together with
Eq.(34) into Eq.(12) leads to the exact expression for essential local sensitivity boundary
condition (9) with respect to height change, imposed as an enforced displacement for the
CSA

ge,h =

{
u′(0, y)
v′(0, y)

}
=

P

EI

{
3(2+ν)

2h
y3

−7Lν
2h

y2

}
=

{
0.0050625y3

−0.0105y2

}
(38)

Both components of Eq.(38) have convective contributions that in practice are computed
from SGR, whereas the contribution from Eq.(34) is user-defined input to the computa-
tional CSA.

The exact expression for the natural local sensitivity boundary condition (9) at the
free end on the right for the height shape variable and its design velocity is

gn,h = ġn,h − [σ]ṅ−∇[σ] · V3(y) (39)

Again, Eq.(39) has convective contributions that, in practice, are approximated by SGR,
while user input defines the design velocity.

6 RESULTS

Each of the following figures plot the error of reconstructed stress components or their
spatial derivative for four increasingly refined meshes of 4×16, 8×32, 16×64, and 32×128
quadrilateral elements, respectively, labeled as Mesh #1, 2, 3, and 4, respectively, on the
x-axis of the plots. The full set of plots appear in the appendices, including additional
plots for SGR for which the exact solution for displacements from Eq.(21) were used in
place of the FEM displacements post-processed from ASTROS or NASTRAN. Each figure
plots convergence rates for three SGR methods: (a) displacement-based, (b) stress-based
without traction enforcement, and (c) stress-based with traction enforcement. Curves
in the plots correspond to choices of order for the SGR Taylor series expansion and the
number of element layers in the patch, as indicated in the plot’s legend. The rate of
convergence for each SGR patch was determined from the slope of its curve and indicated
by the value m in the legend, if linear enough. For some non-monotonic curves with good
convergence at the finest mesh, m∗ indicates the slope of the line segment between the
last two meshes. Collectively, the figures demonstrate that stress-based, traction-enforced
SGR is the most accurate, although the choice of Taylor series order for the best SGR
patch varies with the quantity being reconstructed.

Displacement-based SGR requires at least a second-order patch for stress derivatives,
since stresses are second derivatives of displacement. In contrast, stress-based SGR may
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use first-order patches to estimate stress first derivatives, but requires more layers at beam
surfaces than the SGR order to have enough equations to solve for the SGR Taylor series
coefficients. However, when traction equations are added, only as many layers as the SGR
order are needed.

6.1 Quadrilateral Meshes

Figure 3 clearly shows that stress-based, traction-enforced SGR is more accurate for
x-normal stress, σxx = 0, at the top corner of the beam tip for all choices of patches.
As expected, increasing order improves the accuracy, except for stress-based without
tractions. Displacement-based SGR exceeds second-order rate of convergence for second-
order patches. Although more accurate, third-order patches do not exceed first-order rate
of convergence. For stress-based SGR this may be due to round-off for the small values
of σxx at the corner, since ASTROS computes stress only in single precision. Whereas
stress-based SGR reconstructs tip corner normal stress somewhat more accurately than
displacement-based SGR, traction-enforced stress-based SGR greatly improves accuracy.
 

   

(a) Displacement-Based SGR (b) Stress-Based SGR  
w/o Traction 

(c) Stress-Based SGR with 
Traction Enforcement 

Figure 3. SGR Convergence of Normal X-stress at Top Corner of Beam Tip 
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Figure 4 again shows that stress-based, traction-enforced SGR is the most accurate for
shear stress, τxy = 0, at the top corner of the beam tip, although its first-order patch is
not the most accurate for the coarsest mesh. Surprisingly, first-order stress-based SGR
exhibits a second-order rate of convergence. Second and third-order SGR with traction
enforcement achieve machine-precision accuracy.

Figure 5 also shows that stress-based, traction-enforced SGR is the most accurate
method for shear stress, τxy = −1.5, except for first-order, at the neutral axis of the
beam tip. The patches are super-convergent with second and third-order SGR achieving
numerically zero relative error for single precision. Interestingly, the two-layer patches for
second-order displacement SGR in Fig 5 (a) behave much like stress-based SGR without
traction in Fig 5 (b), and likewise for the three-layer third-order displacement-based
compared to second-order stress-based SGR.

Figure 6 shows that stress-based SGR is better than displacement-based SGR for the
σxx derivative with respect to x, although accuracy without traction enforcementcuri-
ously deteriorates with mesh refinement (i.e., negative slope for rate of convergence).
The likely reason is that, whereas the free surface on the top patch provides additional
information for normal stress components σyy = Φy = 0 and tangential shear stress com-
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ponent τxy = Φx = 0, it provides no additional information about σxx for the ∂σxx

∂dx
= −3

derivative. Unusually, third-order traction-enforced SGR is worse even than first-order.
Traction-enforced second-order SGR does remarkably well, achieving machine precision
accuracy! It is explained by the coefficient reduction c2 = −a1 from Eq.(20) due to the
equilibrium constraints in Eq.(19) implies that ∂σxx

∂x
= −∂τxy

∂y
wherein the latter is recon-

structed accurately from the exactly known parabolic shear traction, which will be seen
in Fig.10.
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Figure 6: SGR X-Derivative of Normal X-stress at Beam Tip Top Corner

Figure 7 again shows that stress-based, traction-enforced SGR is the most accurate
for shear stress derivative, ∂τxy

∂x
= 0, at the top corner of the beam tip. First-order

SGR has a first-order rate of convergence, compensating for the deterioration with mesh
refinement without traction enforcement. Higher-order traction-enforced SGR accuracy is
constant with mesh refinement that does not improve traction accuracy, since it is known
analytically as a natural boundary condition.
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Figure 8 for shear-stress derivative ∂τxy
∂x

= 0 at the neutral axis behaves much like
Figure 5 for shear stress itself. Once again stress-based SGR without traction-enforcement
performs much like displacement-based SGR patches with the same number of layers, but
at one order less. The second-order patches for stress-based traction-enforced SGR are the

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

330



Robert A. Canfield

 

   

(a) Displacement-Based SGR (b) Stress-Based SGR  
w/o Traction 

(c) Stress-Based SGR with 
Traction Enforcement 

Figure 6. SGR X-Derivative of Normal X-stress at Top Corner of Beam Tip 
 

   

(a) Displacement-Based SGR (b) Stress-Based SGR  
w/o Traction 

(c) Stress-Based SGR with 
Traction Enforcement 

Figure 7. SGR X-Derivative of Shear XY-stress at Top Corner of Beam Tip 
 

   

(a) Displacement-Based SGR (b) Stress-Based SGR  
w/o Traction 

(c) Stress-Based SGR with 
Traction Enforcement 

Figure 8. SGR X-Derivative of Shear XY-stress at Neutral Axis of Beam Tip 
 
  

Figure 8: SGR X-Derivative of Shear XY-stress at Beam Tip Neutral Axis
 

   

(a) Displacement-Based SGR (b) Stress-Based SGR  
w/o Traction 

(c) Stress-Based SGR with 
Traction Enforcement 

Figure 9. SGR Y-Derivative of Normal X-stress at Top Corner of Beam Tip 
 

   

(a) Displacement-Based SGR (b) Stress-Based SGR  
w/o Traction 

(c) Stress-Based SGR with 
Traction Enforcement 

Figure 10. SGR Y-Derivative of Shear XY-stress at Top Corner of Beam Tip 
 
 
 
 

Figure 9: SGR Y-Derivative of Normal X-stress at Beam Tip Top Corner

best choice for the shear stress y-derivative at the neutral axis, as they were at the corner.
Third-order traction-enforced SGR is expected to improve once equilibrium constraints
are applied to reduce the number or third-order coefficients as they were for the second-
order coefficients in Eq.(20).

Likewise, for normal stress σxx derivative with respect to y, shown in Figure 9, stress-
based traction-enforced SGR is still the best choice for any order with third-order SGR
the clear choice, achieving machines precision accuracy for this ∂σxx

∂dy
= 0 derivative. Rate

of convergence for none of the patches for any SGR method exceeds its order.

Finally, relative error plotted Figure 10 for ∂τxy
∂y

= 3 indicates that stress-based SGR
is superior to displacement-based SGR. Traction enforcement is remarkably superior for
second-order and third-order stress-based SGR–all results achieving machine precision
level accuracy. Otherwise, patches converge at no higher a rate than their order indicates
for shear stress derivatives.

The complete set of mesh convergence plots are presented in Appendix A for the
ASTROS QUAD4 meshes.
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6.2 Triangular Mesh

Analogous plots appear in Appendix B for NASTRAN TRIA3 meshes (Fig.11). Al-
though TRIA3 is less accurate an element than QUAD4 for this 2-D Timoshenko beam,
the triangular meshes are an important demonstration of the effectiveness of SGR for un-
structured meshes. Whereas higher-order compact finite difference schemes could be used
to improve accuracy of spatial derivatives on structured meshes, they are not applicable
to unstructured triangular element meshes.

7 SUMMARY AND CONCLUSION

The CSA method for computing analytic shape derivatives of displacement and stress
in structures was summarized, highlighting its dependence on spatial derivatives of the
FEA solution. Its advantages are that it is element agnostic and can be implemented non-
intrusively by post-processing FEA results without requiring access to the source code,
much like finite difference methods. Clearly, its accuracy (relative to finite difference)
depends on accurate spatial derivatives that are used for form CSA sensitivity loads and
recover material shape derivatives from local shape derivatives.

The analytic elasticity solution was presented for a classic benchmark problem, the
two-dimensional Timoshenko cantilever beam, and its CSA sensitivity equations and sen-
sitivity boundary conditions were derived by differentiating the Timoshenko beam gov-
erning equations and boundary conditions. The Timoshenko beam CSA derivation and
analytic solution for its spatial and shape derivatives constitute a worthwhile tutorial for
the CSA method in and of themselves. Values for the exact solution for stress and dis-
placement at the root and tip of the beam were used then to evaluate the true error of
SGR computed from FEA results.

The SGR convergence studies for in-plane bending of the two-dimensional Timoshenko
cantilever showed that stress-based SGR is superior to displacement-based SGR gener-
ally for stresses and their spatial derivatives. Traction enforcement greatly improved
accuracy of stress-based SGR. Whereas third-order SGR was clearly most accurate for
reconstructing stress components themselves, sometimes second-order for shear stress or
second-order SGR for normal stress was best for spatial derivatives when tractions were
enforced. The results presented are promising for computing more accurate shape deriva-
tives using boundary-velocity CSA. The next results to generate will be shape sensitivity
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Figure 11: SGR Y-Derivative of Shear XY-stress at Beam Tip Top Corner
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convergence using boundary-velocity CSA based on traction-enforced SGR. TRIA3 and
QUAD4 meshes will be studied for derivatives of critical displacements and stresses with
respect to shape variables for changing the beam length and height using different design
velocities.
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Appendices
A ASTROS QUAD4 MESHES

A.1 Convergence Results for Displacement-Based SGR

Figure A.1: Displacement-Based SGR Convergence at Root
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Figure A.2: Exact Displacement-Based SGR Convergence at Root
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Figure A.3: Displacement-Based SGR Convergence at Tip
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Figure A.4: Exact Displacement-Based SGR Convergence at Tip
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Figure A.5: Displacement-Based SGR Convergence of X-derivatives at Tip
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Figure A.6: Displacement-Based SGR Convergence of Y-derivatives at Tip
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Figure A.7: Exact Displacement-Based SGR of X-derivatives Convergence at Tip
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Figure A.8: Exact Displacement-Based SGR of Y-derivatives Convergence at Tip
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A.2 Convergence Results for Stress-Based SGR without Traction Enforce-
ment

Figure A.9: Stress-Based SGR without Traction Convergence at Tip
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Figure A.10: Exact Displacement, Stress-Based SGR without Traction Convergence at
Tip
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Figure A.11: Stress-Based SGR without Traction Convergence of X-derivatives at Tip
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Figure A.12: Stress-Based SGR without Traction Convergence of Y-derivatives at Tip
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Figure A.13: Exact Displacement, Stress-Based SGR without Traction Convergence of
X-derivatives at Tip
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Figure A.14: Exact Displacement, Stress-Based SGR without Traction Convergence of
Y-derivatives at Tip
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A.3 Convergence Results for Stress-Based SGR with Tractions Enforced

Figure A.15: Traction-Enforced Stress-Based SGR Convergence at Tip
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Figure A.16: Exact Displacement, Traction-Enforced Stress-Based SGR Convergence at
Tip
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Figure A.17: Traction-Enforced Stress-Based SGR Convergence of X-derivatives at Tip
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Figure A.18: Traction-Enforced Stress-Based SGR Convergence of Y-derivatives at Tip
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Figure A.19: Exact Displacement, Traction-Enforced Stress-Based SGR Convergence of
X-derivatives at Tip
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Figure A.20: Exact Displacement, Traction-Enforced Stress-Based SGR Convergence of
Y-derivatives at Tip
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B NASTRAN TRIA3 TRIANGULAR MESHES

B.1 Convergence Results for Displacement-Based SGR

Figure B.1: Displacement-Based SGR Convergence at Root (NASTRA)
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Figure B.2: Displacement-Based SGR Convergence at Tip (NASTRA)
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Figure B.3: Displacement-Based SGR of X-derivatives Convergence at Tip (NASTRAN
TRIA3)
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Figure B.4: Displacement-Based SGR of Y-derivatives Convergence at Tip (NASTRAN
TRIA3)

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

358



Robert A. Canfield

B.2 Convergence Results for Stress-Based SGR without Traction Enforce-
ment

Figure B.5: Stress-Based SGR without Traction Convergence at Tip (NASTRAN TRIA3)
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Figure B.6: Stress-Based SGR without Traction Convergence of X-derivatives at Tip
(NASTRAN TRIA3)
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Figure B.7: Stress-Based SGR without Traction Convergence of Y-derivatives at Tip
(NASTRAN TRIA3)
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B.3 Convergence Results for Stress-Based SGR with Tractions Enforced

Figure B.8: Traction-Enforced Stress-Based SGR Convergence at Tip (NASTRAN
TRIA3)
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Figure B.9: Traction-Enforced Stress-Based SGR Convergence of X-derivatives at Tip
(NASTRAN TRIA3)
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Figure B.10: Traction-Enforced Stress-Based SGR Convergence of Y-derivatives at Tip
(NASTRAN TRIA3)
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Abstract. This paper explores the concept of coupling an MDO problem directly to a
manufacturing process. The design parameters required for various disciplinary analyses
are used to automatically generate geometries that comply with the selected manufacturing
processes. Such geometries are then manufactured to validate our proposal. This strategy
reduces the manufacturing time of unmanned aerial vehicles (UAVs) as the CAD mod-
eling becomes automatic and parametric, also allowing for easier comparison of different
geometries. It can also potentially improve the MDO process by closing the information
loop with manufacturing constraints. We employ the Engineering Sketch Pad (ESP) and
leverage from additive manufacturing techniques usually applied in UAVs. The choice of
ESP facilitates reproducibility, as it is an operating system agnostic open source CAD, and
gradient based optimization, due to its capability of computing gradients of the geometric
outputs with respect to the design parameters. The manufacturing processes of wings and
propellers are addressed. For the same representative wing geometry, we present different
modeling strategies for mass and inertia prediction and for manufacturing using 3D print-
ing. ESP is also employed to predict wing mass and inertia. The maximum difference in
weight between the manufactured wing and its predicted value using ESP is roughly 7%.
The propeller is 3D printed in resin with stereolithography (SLA) technique, and is de-
fined by means of its airfoils, radius, and chord and twist angle distributions. We conclude
about the applicability of the presented strategy, as well as its potential and limitations.
All the scripts are shared with the community so researchers can apply it to validate their
own MDO problem.

Keywords: Additive Manufacturing, MDO of UAVs, UAV design and manufacturing
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1 INTRODUCTION

With the establishment of unmanned aerial vehicles (UAVs), a significant increase in
the interest in such kind of vehicle has been observed in recent years for several applica-
tions. Ranging from widespread ideas such as delivery of goods or search and rescue to
more specialized ones, such as fire fighting [1–3], debris mapping [4], covid mitigation [5],
and even nutrition delivery in the form of edible vehicles [6]. Within different configu-
rations of UAVs, winged designs stand out when higher flight range and endurance are
needed. Several manufacturing techniques have been applied for winged UAVs fabrica-
tion. In terms of wing manufacturing, hobbyists predominantly utilize balsa wood, which
was primarily employed during the early stages of the UAV era. This conventional ap-
proach has subsequently been enhanced by combining balsa with composite materials, as
in Chung et al. [7], and even full composite wings as in Nugroho et al. [8]. Full composite
wings tend to be light and of high quality, but the manufacturing process is complicated
and time consuming. Recently, there has been attention towards additive manufacturing
techniques due to their ability to save time and material, fabricate complex geometries,
and achieve higher levels of automation. Such techniques have been successfully applied
in several cases. Bronz et al. [9] presented a 3D printing strategy for UAVs using Onyx
material, a blend of carbon fiber and nylon, which provided the desired structural prop-
erties and surface quality while keeping a reasonable weight. Taylor et al. [10] and Muir
et al. [11] coupled optimization processes to additive manufacturing techniques in order
to obtain an aircraft structure and a mission optimized UAV, respectively. Laliberté et
al. [12] used 3D printing to build a biologically inspired micro aerial vehicle. In 2015,
Aurora Flight Sciences also presented the first jet-powered 3D-printed UAV [13]. While
several other applications of additive manufacturing for UAVs can be found in the survey
by Goh et al. [14], this technique has also been successfully employed for teaching activi-
ties [15] and even in experiments in hypersonic conditions [16]. For propellers, there are
several off-the-shelf options commercially available. Their good quality combined with
small prices is usually enough for the UAV community, which has not yet explored pro-
peller design and manufacturing with the exception of a few studies, as in Rutkay and
Laliberté [17]. We already employed additive manufacturing for propellers in [18], where
a specific geometry was needed in order to compare different aerodynamic methodologies.
The higher level of automation from 3D printing also facilitates the integration between
design and fabrication processes. Such integration might be beneficial in two ways: enrich-
ing design and optimization process with manufacturing constraints, anticipating possible
problems or even unfeasible designs; and reducing the time needed to complete the full
cycle between design and flight. Regarding the insertion of manufacturing information
within a multidisciplinary design and optimization (MDO) process, Laan et al. [19] used
model-based system engineering techniques to account for the manufacturing cost of high
lift devices in the design of experiments performed for the initial sizing of an aircraft.
Doneli et al.. [20, 21] also addressed, within the MDO, the choice of raw materials, man-
ufacturing and assembly processes as well as the supply chain, ensuring a more realistic
and comprehensive optimization process. In this paper, our focus is to present a viable
way to automatically connect the output of a given MDO process to the fabrication of a
UAV. The optimization loop is represented by means of its output design parameters or
geometry, and the fabrication is performed with 3D printing. We leverage from the size
and affordable characteristics of UAVs to fully test our proposal, presenting the entire
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Table 1: Optimal design from [22]

Design variables Value
Root chord 0.12 m
Tip chord 0.095 m
Wing span 0.7 m
Cruise α 10◦

Turn α 8◦

Battery mass 0.2 kg

Figure 1: 3D model and real vehicle from [22]

process, from modeling to real manufacturing, for wings and propellers. This paper is
organized as follows: in Section 2 we present the context in which this study takes place.
Section 3 explains how we share the data. The methodology and results are presented
in Sections 4 and 5, respectively. Our conclusions and perspectives are then presented in
Section 6.

2 CONTEXT

This paper is part of a research line dedicated to the application of MDO strategies to
small vertical takeoff and landing (VTOL) vehicles. Apart from being useful for different
applications, such vehicles also offer the possibility of experimentally validating design
strategies and decisions due to their low cost and easier manufacturing and flight testing
(compared to bigger vehicles) procedures. On the other hand, manufacturing the vehicle
is usually a time consuming task that includes not only the fabrication itself but also the
generation of 3D models, needed to guide the integration of all the systems. Building
a good model often requires experience to avoid several iterations and minimize cost.
In [22], we developed a simplified MDO problem to design a vehicle for the 2022 Inter-
national Micro Aerial Vehicle Competition. The outcome of this problem was a set of
parameters, shown in Tab.1. In order to ”transform” such numbers into a real vehicle,
we manually built the 3D model shown in Fig.1. Such process consumed significantly
more time than running the MDO. Similarly, in [18] we fabricated propellers to compare
different aerodynamic techniques for evaluating their performance. After designing one
by defining its airfoils, twist and chord distributions, a manual 3D model was also needed
to design the hub and integrate it with the blades in order to have a usable propeller.
This papers addresses this gap between the output of a given MDO problem and the
generation of a manufacturing compliant 3D model, allowing for time and cost reduction
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Table 2: Wing section parameters.

Parameter Unit
Chord [m]

Position in X, Y, and Z [m]
Twist angle [deg]

Airfoil location of max camber [percent chord]
Airfoil maximum thickness [percent chord]
Airfoil maximum camber [percent chord]

and permitting less experienced designers to build models more easily.

3 DATA SHARING

In the subsequent sections, we outline the methodology utilized and present the results
obtained. All files, ESP geometries and Python scripts, are shared so the community
can use and improve the methods. They are available in ENAC drones group GitHub
at https://github.com/enac-drones/AeroBest23_MDO_UAV/tree/paper_codes/. We
provide two examples for wings manufacturing, one simpler without twist and using a
NACA airfoil (under Wo twist folder) and other with twist and Kulfan airfoils (under
With twist folder). The scripts using ESP’s Python interface for wing weight estimation
are also provided. The Python scripts for blade generation and ESP files for propellers
are available under the folder propellers.

4 METHODOLOGY

Instead of defining an MDO process, we only represent the output of such kind of
problem, ensuring that the same strategy can be used for any process with a similar
parametrization. As explained by Hajdik et al. [23], despite the wide application of free
form deformation (FFD) in MDO, as in [24–26], coupling FFD geometries in general de-
sign and manufacturing workflows is not straightforward, as information might be lost
throughout this process. So, a CAD tool is employed, specifically the Engineering Sketch
Pad (ESP) [27], an open source and operating system agnostic software. ESP incorporates
drivers for aerodynamic and structural tools. Additionally, it is compatible with OpenM-
DAO [28] and natively allows for gradient calculation. In order to test our proposal for
wings, we select a representative set of design parameters and present the different mod-
eling strategies needed for manufacturing and for mass/inertia estimation. For propellers,
the manufacturing process is simpler and relies on BladeX by Gadalla et al. [29].

4.1 Wing and propeller parametrization

Each wing section is defined by the parameters shown in Tab.2, where the number of
sections can also change. ESP has primitives for different airfoil families, but we employ
NACA family for simplicity. The structural parameters, shown in Tab.3, are defined for
the whole wing. Spars are assumed to be cylindrical as off-the-shelf carbon tubes are
usually employed in this form for small UAVs. The rib offset is the angle between the ribs
and the chord line. For propeller parametrization we employ three parameters: airfoil(s),
chords and twist distributions along the radius.
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Table 3: Wing structural parameters.

Parameter Unit
Number of ribs -

Thickness of the ribs [m]
Ribs offset [deg]

Number of spars -
Diameter of each spar [m]
Location of each spar [percent chord]

Figure 2: Modeling the wing to comply with the manufacturing technique: solid body
with empty internal ribs (in detail on the right) and spars.

4.2 Manufacturing setup

The wings are manufactured with a Raise3D N2 Pro by Raise 3D1. We use the
lightweight PLA from colorFabb2 for all tests. Once the geometry has been defined, as an
STL file for our case, it needs to be ”sliced” in order to be printed. There are several open
source slicers. We use the IdeaMaker3 due to its compatibility with our printers. For the
propeller, the 3D printer Form 3+, from FORMLABS4 is employed. The material used
is the ”Tough” resin, provided by the same company. To prepare the printing process we
use the PreForm5, also open source.

4.3 Modeling wings for manufacturing

The 3D printing process is based on the one presented in [30] and has already been
used in [22]. This fabrication strategy ensures a more continuous printing, minimizing
the need to remove the nozzle throughout the process, which tends to increase the weight
of the piece and reduce its quality. It roughly consists in modeling the wing as a solid
body while keeping the ribs as empty cavities. Figure 2 shows the obtained model. ESP is
capable of directly outputting the resulting geometry as an STL file, which is then used to
obtain the G code needed to print the part. Manufacturing wings with high twist angles
and cambered airfoils might require some adaptations to the original method in order to

1www.raise3d.com
2www.colorfabb.com
3www.ideamaker.io
4www.formlabs.com/eu/3d-printers/form-3
5www.formlabs.com/eu/software/#preform
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Figure 3: Modeling the real printed wing for mass and inertia estimation, with internal
ribs being detailed on the right.

Table 4: Masstran material definition.

Parameter value
Material Lighweight PLA

Material density 390 [ kg
m3 ]

Material type Isotropic shell
Membrane thickness 0.74[mm]

correctly generate the ribs. An example for such case is also available for comparison.

4.4 Modeling wings for mass and inertia estimation

Understanding the modelization strategy for mass and inertia estimation is straightfor-
ward. The CAD model needs to represent the final manufactured body as accurately as
possible, as seen in Fig.3. With such model and the material definition, shown in Tab.4,
we calculate mass and inertia with the Masstran feature present in PyCaps [31]. The
membrane thickness was obtained after averaging different printed pieces.

4.5 Modeling propellers

The propeller process starts with the definition of one blade using BladeX [29]. The
blade is defined by means of its airfoils and chord and twist distributions. Once the blade
is generated, it is exported as an IGES file. The ESP script then imports this file to
generate both blades. It also models the hub and exports the propeller as an STL file to
be used for printing.

5 RESULTS

In the following sections we present the results obtained with the manufacturing pro-
cesses as well as some aspects regarding their validation. We present the comparison
between predicted and measured weight for wings and discuss the time needed to obtain
the printed pieces.

5.1 Wings

Figure 4 shows two printed wings, different from each other because of the airfoils,
geometric twist and number of ribs, and also a zoom in the airfoil and wing internal
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(a) Printed wings with and without
twist. (b) Airfoil and internal structure.

Figure 4: Printed wings.

(a) Twisted wing with 3 ribs per side. (b) Straight wing with 10 ribs per side.

Figure 5: Wing mass measurements.

structure. The geometry of the wings can for now be validated by means of measuring
span and chord. A further analysis with 3D scanners is left for future work. However,
any mismatch between the printed wing and the one defined during the optimization is
most likely caused by the printing itself, as the geometry generated with ESP matches
the one intended. We also compare the expected and observed mass using Masstran from
PyCaps [31]. Each wing mass was measured and the results are shown in Fig.5. Table 5
shows the difference between predicted and measured mass. The accuracy of the outcome
is highly dependent on the quality of the mass models. For more complex wings with,
for example, command surfaces, servos, and hinges, the prediction might loose precision,
depending on how such geometry is modeled. For our case, the simple wing geometry is

Table 5: Mass prediction results.

Number of ribs Masstran result [g] Measured mass [g] Error [%]
3 25.30 26.1±0.1 3.16
10 31.53 29.5±0.1 6.88
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(a) Printed propellers straight out of
the printer.

(b) After the cleaning and ”sanding”
process.

Figure 6: Printed propellers.

based on our vehicle Falcon [22] shown in Fig.1, a UAV with four motors and no command
surfaces. As Masstran also is capable of calculating inertia, this tool can be very useful
for flight dynamics analysis. However, any validation with this regard is left for future
work. The CAD model and “manufacturing view” are automatically generated once the
geometry is known. So the total time to obtain the piece is driven by the manual slicing
process, which is straightforward, and the printing time. The printing time depends highly
on the geometry, printer, and material. For both wings manufactured for this paper, the
process took roughly 4 hours each considering the setup presented in Section 4.2. This
result shows a potential of reducing the manufacturing time in days where the final goal
is to have only the printing time as constraint. However, the real reduction is hard to
estimate because it highly depends on the designer’s ability to generate the model and on
the complexity of the geometry.

5.2 Propellers

Figure 6 shows the obtained propellers. The printer generates a supporting structure to
ensure quality, as shown in Fig.6a. This structure needs to be removed and the propeller
cleaned, as shown in Fig.6b. We can also validate propellers by measuring the chords and
twist angles. The 3D scan technology is even more important for them as it is difficult
to measure the angles properly. However, the similar performance in experiments and
analytical methods observed in [18] indicates that the propellers are close to the original
geometry definition.

6 CONCLUSION

In this paper, we present a preliminary way of integrating the manufacturing process of
wings and propellers to an MDO framework for UAVs. We employ ESP to automatically
generate the fabrication and mass prediction geometric ”views”. Such geometries are
then used to manufacture two sample wings and assess their predicted weight. The
weight prediction shows good accuracy for our case, mainly because of the simplicity of
the wings analyzed. We also present a similar strategy for propeller manufacturing. Such
strategy has also been used in [18] and the performance obtained in wind tunnel tests was
close to the one expected. It is expected that this solution can improve MDO processes
by providing new manufacturing constraints and anticipating potential issues. It can also
reduce the time needed to build test vehicles to perform flight and/or wind tunnel test
campaigns, thus accelerating the design process. Every script used for this paper is open
source so the community can use the methods to build UAVs and subscale vehicles to
improve MDO processes.
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Abstract This contribution introduces the concept of sky sailing, which combines the 

advantages of airships and standard fixed-wing aircraft, albeit in a vertical plane alignment. 

The proposed vehicle is equipped with rigid aerodynamic sails and auxiliary engines, enabling 

navigation and control with minimal power consumption along the desired trajectory. The 

proper orientation of the airship relative to the wind direction is achieved through the 

adjustment of the sails' angle of attack and the use of auxiliary lateral engines. Consequently, 

the system enables efficient maneuvering, particularly in windy conditions, while requiring low 

energy input. In the current stage of our research, we focus on 2D sky sailing in a horizontal 

plane. This study formulates mathematical model which employs a combined approach of 

analytical methods and numerical simulations based on finite volume method. Then, the 

corresponding control problem aimed at following the desired fly path with the lowest possible 

energetic cost. The motivation behind this work stems from the potential applications of aerial 

monitoring, such as crop or forest surveillance. 
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1. INTRODUCTION 

Balloons, aerostats and airships are widely applied as High Altitude Pseudo Satellites (HAPS) 
for environment and aerial monitoring as well as surveillance missions [1-2]. The rapid 
development of materials and electronic devices has influenced the advances in the field of 
airborne vehicles [3-5]. Many   research works are devoted to solving problem of predicting the 
movement of airships in both the vertical and the horizontal direction [6-7], as well as to 
analysis of the changes in volume and corresponding buoyancy force resulting from heating of 
the envelope by the sun and heat exchange with the environment [8-9]. However, the problem 
of control of such vehicles remains difficult due to variable atmospheric conditions. Proposed 
by [10] solution to control the horizontal balloon drift across the wind involved the development 
of a balloon guidance system (BGS) and its in-flight tests. The idea of this system is based on 
application of an aerodynamic wing suspended beneath the balloon (1km or more) by means of 
a tether. The drag forces are controlled using winch system for lowering and raising the wing 
leading to stabilizing the balloon position. In another application, the software tools were 
developed focusing on station-keeping of high altitude balloon, exploiting the natural wind 
conditions [11]. By using altitude control system based on venting and pumping processes the 
efficient stabilization of the platform within designated district was achieved.  

In the previous paper [12], the authors proposed construction of the aerostat based on 
deployable ultra-light rod-cable tensegrity structure integrated with envelope and equipped with 
elements of controllable lengths. Such construction enables convenient transport of the aerostat 
with the use of a balloon or an aircraft to the operational altitude and its automatic deployment 
at certain location at the atmosphere. On the other hand, the application of adaptable elements 
enables change of the aerostat volume and shape during the flight. In turn, the procedures for 
buoyancy control of a tensegrity-based aerostat were presented in [13]. The ultra-light rod-cable 
tensegrity structure instrumented with electronic devices was proved to enable precise control 
volume of the aerostat, the corresponding buoyancy force and resulting aerostat horizontal 
motion. The presented numerical examples have shown the possibility of accomplishing 
various flight missions by using volume and shape control.  

The current contribution introduces the concept of sky sailing, which allows to combine the 
advantages of lighter-than-air vehicles and standard fixed-wing-aircrafts. According to the 
proposed concept, the aerostat is equipped with a rigid sail of aerodynamic profile and auxiliary 
engines of small power consumption. The engines provide desired orientation of the aerostat 
with respect to the wind direction, while the sail causes generation of additional aerodynamic 
forces influencing motion of the aerostat. As a result, the system enables efficient tacking in the 
wind and low-energetic motion of the aerostat. In the current stage of the research, for the sake 
of simplicity we consider a basic problem of sky sailing in the horizontal plane, where the 
vertical components of aerodynamic forces and buoyancy changes are neglected.  

The remainder of the paper is organized as follows. The second section presents 
a mathematical model describing the sky sailing concept, which is based on equations of motion 
of the aerostat in horizontal plane and numerically determined changes of aerodynamic forces 
in terms of the system configuration and the wind velocity. The third section shows results of 
the conducted computational fluid dynamics (CFD) analyses including air velocity fields and 
aerodynamic forces resulting from the wind flow around the aerostat for various angles of 
attack. In the fourth section we formulate a control problem aimed at following the desired 
flight path with minimal energetic cost of the engines operation and analyse its basic features. 
Finally, in the fifth section general conclusions about modelling, control and advantages of the 
sky sailing concept are presented.  
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2. MATHEMATICAL MODEL OF THE SKY SAILING  

The proposed concept of sky sailing effectively combines the advantages of airships and 
standard fixed-wing aircraft. The advantages of the airship are achieved by using lighter-than-
air gas (helium or hydrogen) in order to obtain buoyancy force and stable position at the 
assumed altitude under certain atmospheric conditions. In addition, the proposed airship is 
equipped with rigid sails of aerodynamic profile aligned in the vertical plane (Fig. 1a, side view) 
and auxiliary lateral engines (Fig. 2b, horizontal view). The combination of the vertical sails 
and auxiliary lateral engines enables effective usage of aerodynamic forces and obtaining the 
effect of drifting in the wind in the direction deviated from the wind direction. The proper 
orientation of the airship relative to the wind direction and its energy saving motion in space 
are achieved via proper adjustment of the engines’ power and sails’ angle of attack.  
Consequently, the system enables efficient maneuvering and navigation, particularly in windy 
conditions, while requiring low energy input. 
 

 
 

(a) Side view (b) Top view 

Figure 1. Airship model. 
 

                                 
(a) Global and local coordinate systems 

(b) Local coordinate system for aerostat and sail 
orientation 

Figure 2. Coordinate systems using in mathematical model of the aerostat 

The fundamental mathematical model of the sky sailing concept refers to the motion of the 
aerostat in the horizontal plane. In such a model we consider exclusively aerodynamic forces 
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acting in horizontal plane, while the variations of buoyancy and perturbation of vertical forces 
(e.g. due to temperature changes) are neglected. The starting point for development of the 
mathematical model is proper definition of the auxiliary coordinate systems and their 
orientation angles with respect to global coordinate system. In particular, Fig. 2a presents four 
angles denoted by α which are referred to global coordinate system, namely: �� – the wind 
direction, �� – the aerostat main axis direction �� (see Fig. 1a), �� – the sail axis direction, and 
�� – the aerostat motion direction. In addition, ���  is the wind direction relative to the direction 
of the aerostat motion, which results from both the direction ��  and velocity of the wind 	� as 
well as the direction �� and velocity of the aerostat motion 	� in a global coordinate system: 
 

 ��� = �(�� , 	� , �� , 	�). (1)  
 

On the other hand, the angles denoted by � are referred to relative wind direction, namely: �� 
– the direction of the aerostat with respect to relative wind direction and �� – the direction of 
sail with respect to relative wind direction. Both the �� and  �� denote the angles of attack (of 
the aerostat and sail, respectively) and they can be used for simple and intuitive 
parameterization of the results obtained from CFD analyses. Moreover, both these angles can 
be expressed in terms of angles in global coordinate system: 
 

��  = �� − ��� ,   ��  = �� − ��� .                                         (2)  

 

Finally, �� denotes angle between the sail and the aerostat: 
 

��  = �� − �� = �� − ��.                                                 (3)  

 

Let us note that according to the above discussion, we have distinguished eight angles and 
four relations between them, which reveals that four angles remain independent. The set of 
independent angles can be conveniently selected as: ��, ��, �� , �� , where: �� – is a given 
time-dependent quantity, �� – is one of the main unknowns of the system, �� – is one of the 
control variables, while �� – can be expressed in terms of basic unknown components of 
aerostat motion � and �. 

The next step of model development is computation of aerodynamic forces and moments 
acting on the aerostat with respect to the angles of attack �� and �� as well as the wind 
velocity relative to the aerostat 	�� . These forces and moments are determined using the CFD 
model of the flow around aerostat described in the next section. The forces acting in the 
direction parallel and perpendicular to the wind direction (�� and ��) as well as torque acting 
on the aerostat �� can be expressed in general forms: 

�(�� , ��, 	�� ) = �(�� , ��, ��� , 	��  ) = �(�� , ��, �� , 	� , �� , 	�) = �(�� , �� , �� , 	� , �� , �� ),  (4) 

where: � = {��, ��, ��}. Further, forces refereed to global coordinate system (�� and ��) can 
be calculated using standard transformation: 

���
��� = T(��� ) � ��(�� , ��, �� , 	� , �� , �� )

 ��(�� , ��, �� , 	� , �� , �� ) � = � ��(�� , ��, �� , 	� , �� , �� )
 ��(�� , �� , �� , 	� , �� , �� )�, 

while the torque �� does not require transformation to global coordinate system and thus 
T(��� ) is the transformation matrix with dimensions 2 by 2. Let us note that determined 
forces depend on angle of aerostat rotation ��, angle of the sail �� (one of system control 
variables), known direction and velocity of the wind ��  and 	� as well as unknown 
components of aerostat velocity �� , �� . Similarly, forces generated by the auxiliary lateral 
engines in local coordinate system of the aerostat {#�, #�} can be transformed to global 
coordinate system and expressed as follow: 
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�#�
#�� = T(��) � #� #�

 � = � #�(#�, #�, ��)
#�(#�, #�, ��)�.                                          (5) 

Moreover, the torque corresponding to the operation of the engines �$ can be calculated in 
a standard manner.  

 
Figure 3. Force systems acting on the airship (top view). 

 
The above dependencies allow to define equations of motion governing the process of sky 
sailing in the horizontal plane: 
 

 

%�& = ��(�� , �� , �� , 	� , �� , �� ) + #�(#�, #�, ��)
%�& = ��(�� , ��, �� , 	� , �� , �� ) + #�(#�, #�, ��)

(�&� =   ��(�� , ��, �� , 	� , �� , �� ) + �$(#�, #�, ��)
 (6)  

 

where % is the total mass of the airship, ( is the moment of inertia of the airship, ��  and ��  
are components of aerodynamic forces acting on the airship in the x and y direction, 
respectively, #�  and #� are forces generated by the propulsion system in the x- and y-
direction, respectively, while �$ and �� are torques generated by aerodynamic forces  and 
propulsion system, respectively. The presented form of the governing equations reveals the 
dependencies of generated forces and torques on the main unknowns of the problem �, �, ��, 
known parameters of the wind �� , 	�  as well as control variables ��, #�, #�.  

3. NUMERICAL ANALYSES OF THE FLOW AROUND AEROSTAT 

Numerical studies related to the determination of the values of forces and torques acting on 
the aerostat model and used in equations of aerostat motion (Eq. 6) were carried out using 
Ansys Fluent software. The obtained results allowed to create the database established for 
given, discretized values of aerostat hull and sails angles of attack wind velocity as well as 
wind velocities. For the purpose of solving the Eq. 6 the intermediate values of forces and 
torques were interpolated. 

The full 3D numerical model of the airship consists of a hull and two sails in the form of 
aerofoils mounted rotatably in a controlled way with respect to a vertical axis passing 
through the centre of gravity G of the entire structure. The position of the centre of gravity 
G was determined based on the design of the structure equipped with the basic systems 
necessary to perform the assumed mission. The profile model of the aerostat section axis 
has a length of 12 m in the longitudinal and a diameter of maximum value of 3 m. The value 
of the aerostat's lateral area is equal to 91.56 m², while the projected area of the aerostat's 
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surface is 7.08 m2 in the longitudinal direction and 28.22 m2 in the transverse direction.  
The aerostat is equipped with two sails mounted vertically under and above the hull with 

possible rotation about the vertical axis g3 (see Fig 1a). A single sail has a length of about 
2.97 m, a maximum width of 0.551 m and a height of 1.995 m. The value of the lateral area 
of the entire sail is 12.31 m2, and the projected area of the aerostat surface in the longitudinal 
direction is 0.895 m2 and in the transverse direction is 5.98 m2. It can be seen that the values 
of the projected areas of the sail are relatively large compared to the projected areas in the 
corresponding directions. 

 

 
 

Figure 4. Designed airship geometry used for finite 
volume method analysis. 

 

Figure 5. Airflow velocity distribution in the XZ 
plane: �� = 0,  �� = 0,  	 = 10%/,. 

 

  
Figure 6. Airflow velocity distribution in the XZ 

plane: �� = 15, �� = 15, 	 = 10%/,. 
Figure 7. Airflow velocity distribution in the XZ 

plane: �� = 15,  �� = 0, 	 = 10%/,. 
 
During the analyses, it was assumed that the aerostat is surrounded by air with a density 
resulting from a given altitude, which was selected based on the NASA atmosphere modeli. 
It was assumed that in each direction the space surrounding the aerostat have a size of 40 
by 60 m, whose length ratio is between 3.5 and 5 values of the aerostat's length. The 
conducted simulations have shown that this is a sufficient value for analysis. The numerical 
model of the aerostat and the surrounding air consist of 3.6 million nodes, 4.4 million 
surface elements refined in the areas of geometry changes. The mesh in the vicinity of the 
aerostat and sails was also refined. Further away from the model at the edges of the fluid 
model, a larger elements dimensions were used. Based on the aforementioned nodes and 
surface elements, a fluid mesh of about 660 thousand polyhedral cell volume elements was 
created. In order to reflect the basic fluid behaviour in the boundary layer, a boundary layer 
consisting of 5 volume elements was built. 

The numerical model of the aerostat including sails was parameterized by using the 
following assumptions concerning parameters variations: 

                                                
i The model is available at NASA’s web page (accessed 2023 May 31): 
https://www.grc.nasa.gov/www/K-12/airplane/atmosmet.html.  
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• The parameter describing the angle of deflection of the aerostat in the horizontal 
plane – during the analyses, the variation in the range of –30 to +30 degrees from 
the direction of airflow was allowed; 

• The parameter describing the angle of deflection of the sails relative to the fuselage 
– during the analyses, the angle was allowed to vary in the range of –15 to +15 
degreed relative to the hull; 

• The air velocity was varied in the range of 2.5–10 m/s. The range of such speeds was 
due to the assumption of the limitation of wind speed in real conditions during the 
planned experimental tests.  

During the numerical tests, the air flow was assumed to occur in the horizonal XY plane 
in the X-axis direction. The vertical direction was described by the Z-axis. The simulations 
were carried out for various combinations of the above-mentioned parameters, which 
allowed to determine the values of forces acting in each direction and the values of moments 
with respect to each mentioned axis. The values of moments were determined with respect 
to axes passing through the centre of gravity G located in the axis of the aerostat at a distance 
of 5.75 m from its tip. 

Figures 5-7 show the distribution of velocity in the XZ plane around the aerostat for 
different hull and sail deflection angles. It can be seen that both changing the angle of the 
hull relative to the wind and the sail causes significant changes in the streamlining of the 
aerostat with the sails by the air.  

4. FORMULATION OF THE CONTROL PROBLEM FOR SKY SAILING 

The control problem corresponding to the sky sailing concept involves following the 
assumed trajectory of aerostat horizontal motion with minimal energetic cost. The most 
general form of the objective function includes the integral term denoting global error of 
the trajectory tracking and integral term denoting work done by auxiliary engines. The 
control is conducted with respect to actual angle of the sail and forces generated by the 
engines. The constraints of the problem are equations of motion of the system. The complete 
mathematical formulation of such a control problem takes the form: 
  

Minimize:  . /,(�, �) − ,̅(�, �)1�2
3 45 + 6 . 7#��� + #��� 8452

3  

with respect to:  ��(5), #�(5), #�(5) 

subject to:  %�& = �� + #� ,    %�& = �� + #�,     (�&� =   �� + �$ 

where ,̅(�, �) denotes the assumed trajectory of motion in the horizontal plane, while 6 is 
the weighting coefficient of the control cost term. Let us note that one of the proposed 
control variables ��(5) corresponds to the semi-active control of the proposed system, while 
two remaining control variables #�(5) and #�(5) correspond to the active control. Therefore, 
the presented formulation can be considered as a joint problem of semi-active and active 
control. However, depending on the value of the weighting coefficient of the control cost 
term 6, two opposite cases can be distinguished. In the first case, by setting relatively large 
value of the weighting coefficient, the active control terms are eliminated and the 
formulation becomes a semi-active control problem with respect to angle of the sail ��(5). 
In the second case, when the weighting coefficient is set to zero the control problem is 
aimed at optimal following of the assumed trajectory regardless of the control cost.  

The above formulated control problem can be solved using various approaches, semi-
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analytical or numerical methods. One of the possibilities is application of the so called 
inverse dynamics method known from the problems of adaptive impact absorption. The 
possibilities of applying such method to both above mentioned versions of the control 
problem will be the subject of the further research. 

5. CONCLUSIONS 

The article presents the concept of an airship propelled by two engines and equipped with 
vertical sails with adjustable angle of attack. The objective of the work is to present an 
effective approach for controlling the airship motion by using aerodynamic loads generated 
by the sails while minimizing the engines’ usage. In order to solve this problem, a 2D 
mathematical model with three degrees of freedom (airship rotation angle and two 
displacements) is developed, where the control is achieved by changing sails’ angle of 
attack and engines’ thrusts. The mathematical model is supported by a three-dimensional 
finite volume model developed in the Ansys Fluent, which is used to create a reference 
database containing aerodynamic forces acting on the airship for selected discrete values of 
wind directions and sails attack angle. Eventually, the problem of airship sailing along a 
pre-defined mission path at a fixed altitude is formulated, and potential methods of its 
solution are proposed. Such defined problem, particularly the numerical analysis of 
controlled airship movement, will be the subject of further work of the authors. 
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Abstract. In this paper, we investigate how deep learning can improve different parts of
aerial photogrammetry. We focus on creating flexible waypoints on-the-fly (Next Best View
planning) and dealing with challenges when working with multiple drones. By checking
if real-time adaptive waypoint generation for drone navigation is possible and exploring
issues in multi-drone systems like task assignment and formation changes, we hope to find
ways that deep learning neural networks can enhance aerial photogrammetry, ultimately
making data collection more efficient and accurate, and moving the field forward.
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1 INTRODUCTION

Uncrewed aerial vehicles (UAVs) have revolutionized aerial photogrammetry, enabling
more precise and efficient data collection. However, this field still has untapped potential
waiting to be explored. This paper delves into the power of deep learning in enhancing
various aspects of aerial photogrammetry, focusing on creating adaptable and real-time
waypoint generation (Next Best View planning) and managing multi-drone systems safely.

In the first part of this paper, we present a novel framework for Next Best View
(NBV) planning for 3D reconstruction using UAVs. This framework comprises two deep
learning models. The first model is trained on 3D reconstruction from single images and
sorts views based on reconstruction performance [1]. Then, Oriented FAST and Rotated
BRIEF (ORB) [2] feature filtering is used to find distinct features from the selected
views based on their reconstruction performance in the previous step. The second model,
which is called the Graph Best View Finder (GBVF) predicts the NBV for aerial image
acquisition by leveraging the learned representation of the first model. More precisely,
the GBVF model generalizes unseen objects from the classes it has been trained on.

Conventional photogrammetry techniques depend on pre-determined waypoints tai-
lored to individual or multiple agents. However, with the advent of innovative approaches,
such as the on-the-fly waypoint generation method presented in the first section of this
paper or any other method that does not rely on detailed prior knowledge of the envi-
ronment and target, there is an increasing demand for a system capable of adaptively
managing path planning for multi-agent photogrammetry missions. This system must
consider safety measures, optimization strategies, and constraints specific to each mis-
sion.

In the second part of this paper, we explore the potential of Reinforcement Learning
(RL) in managing multi-drone systems in a simplified environment. Reinforcement Learn-
ing is a suitable approach for managing multi-drone systems due to its ability to handle
dynamic and uncertain environments, making it ideal for real-time decision-making and
adaptation. The environment is a simple grid-world that includes multiple agents navi-
gating to waypoints while remaining within the mission geofence and avoiding obstacles
and other UAVs. We leverage a Proximal Policy Optimization (PPO) [3] Reinforcement
Learning algorithm, which shows great promise for further development and application
to more complex tasks. PPO has been selected for its relatively less complicated imple-
mentation and robustness to hyper-parameters.

Our research demonstrates the significant benefits of incorporating deep learning into
aerial photogrammetry. This technology drives the field forward and improves efficiency
by reducing the time-consuming pre-planning stage.

2 NEXT BEST VIEW (NBV) PLANNING

To improve any aerial photogrammetric 3D reconstruction, one must consider how
images are captured by the drone during data acquisition. Attempts have been made to
generate waypoints based on the geometry of pre-defined boundaries or by considering
sequential images’ horizontal and vertical overlaps [4]. However, these methods often fail
to capture areas of the scene that are occluded and neglect what the drone is currently
viewing when proposing new waypoints and orientations to take the next images. For this
reason, integrating a method for predicting the NBV into the data acquisition phase of
the photogrammetry pipeline holds significant promise for optimizing the reconstruction
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process, minimizing manual intervention during flight operations, and achieving higher-
quality reconstructions with greater ease.

In the following subsections, we introduce a novel supervised deep learning framework
for approaching the NBV problem within the context of aerial photogrammetry.

2.1 Related Works

Deep learning approaches have recently emerged as a viable method for addressing the
NBV planning problem in 3D reconstruction. These systems use sophisticated neural net-
works to learn successful view selection and path planning strategies and have occasionally
outperformed classic probabilistic algorithms.

The work in [5] proposes a volumetric-based planning method for single-object mod-
elling. Before this approach, NBV computing was viewed as a search problem [6, 7]
in which the goal was to locate the view that maximized a metric. Unlike prior ap-
proaches, [5] aimed to forecast the NBV directly using the information provided by the
partially rebuilt model. They create a discrete NBV search space and employ a classifi-
cation strategy to generate a collection of possible classes. A sphere tessellation is used
to produce a distinct set of viewpoints on which a model predicts NBV classes using a
3D-Convolutional Neural Network (CNN) architecture. The results demonstrated that
NBV-Net could recreate unknown items not visible during training and over the majority
of the surface. This model furthered the state-of-the-art NBV approaches.

Other approaches like [8] offered an NBV planning method that uses a 3D-CNN to
assess the utility of a viewpoint. As an input to the CNN, the approach used a multi-
scale voxel representation of a partially analyzed scene. It trains utility scores of opinions
from an oracle with access to real-world data. Recent work in [9] also compares the
volumetric information gain measures and introduces several information gain functions
for volumetric viewpoint evaluation. They counted unobserved voxels to quantify observ-
able information and tested the proposed information gain functions’ performance using
various modelling situations.

A recent review of the methods for NBV planning [10] concludes that, while there is a
large body of literature on AI-based path and coverage planning, viewpoint planning for
3D reconstruction based on AI and deep learning approaches is still in its infancy, with
much room for further research.

2.2 Framework Overview

To develop a deep learning-based NBV planning that can be trained for automatic
UAV-based 3D reconstruction, a novel framework comprising two parts is proposed; both
deep learning models can be trained end-to-end. The first of these two models is a single-
view autoencoder-like network adapted from [1], trained on 3D voxel reconstruction from
single views. This model is used to create a labelled dataset which creates a sequence
of canonical views for training the second model. The second end-to-end model fuses a
modified graph-based camera relocalization network from [11], which is called the Graph
Feature Extractor (GFE), with a Long Short-Term Memory (LSTM) [12] network for
next pose prediction. The GFE serves to embed features from views that are spatially
separated, while the LSTM learns the sequential capturing behaviour over the course of
aerial photogrammetry data acquisition. The combination of the GFE and LSTM forms
the Graph Best View Finder (GBVF).
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Figure 1: An overview of the framework for training the Graph Best View Finder (GBVF).

2.3 Dataset

The dataset to train the Sparse Auto-Encoder (SAE) is generated using ModelNet40
objects [13]. ModelNet40 does not have the same number of objects for each class, so
the datasets used to train the SAE are balanced by sampling the same number of objects
from each class. The first dataset contains 100 objects from 10 classes, and the larger
dataset contains 800 objects from 20 classes. BlendTorch [14] was used to generate the
datasets by taking approximately 300 images of each object in Blender tessellated evenly
on an upper hemisphere centred on the object.

2.4 SAE Canonical Pose Creation

The first part of canonical pose creation requires an SAE model [15], which gives a
crude 3D reconstruction of an object from a single view. This reconstruction, though
not of great quality, helps determine the utility of a particular view by creating a 3D
occupancy grid of the object of interest by comparing it to the ground truth. In the
results of previous works [1], it is observed that for a deep-learning 3D reconstruction
from multiple views, sampling views which have the highest Intersection-over-Union (IoU)
and also have a threshold for the number of similar ORB features amongst each other,
have better reconstruction accuracy than other subsets of views. The poses of the sampled
views were used as the label for the sequence of canonical views for a given object. As a
result, the SAE acts as a dataset labeller for the GBVF model.

2.5 Graph Construction and Graph Neural Network (GNN) Architecture

A dense graph of the collected views is iteratively constructed, starting with a random
initial pose. A latent space representation is learned for the graph using a pre-trained
image feature extractor network and a GNN. The choice of the use of GNN is motivated by
recent papers having shown that they take advantage of geometric relationships between
images of the same object through message-passing networks [11, 16, 17]. The node
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message and edge representations are all constructed and learned using a soft-attention
mechanism [18].

A graph is commonly denoted as G = (V,E), where V = {vi} and E = {eij} symbolize
the nodes and edges, respectively. Each node vi has an attribute xi, while each edge
eij = (vi, vj) links the nodes vi and vj.

Each node’s representation is kept as a 3D tensor to accommodate the spatial correla-
tions amongst image features, which are crucial for knowledge exchange across multiple
perspectives. Consequently, each feature map xi ∈ RH×W×C (with H, W , and C stand-
ing for height, width, and channels) can be integrated into the graph without any loss of
information. As a result, the message passing and node updating functions are modified
to facilitate information exchange in the form of 3D tensors. Initially, a dense directed
graph is built by linking every pair of nodes with edges. This approach allows temporally
separated images to influence each other. The graph model enables global information
distribution to each node.

The GNN architecture used is similar to and inspired by [11]. The message is de-
termined from features at the node using convolutions to maintain spatial associations.
The generation function computes message mj→i from xi and xj. Both xi and xj are
concatenated along the channel dimension and then fed into two convolution layers with
a kernel size of 3 × 3 to generate the message. The output channels of both layers are
identical to xi, rendering mj→i the same size as xi and xj. These operation steps are also
shown in Fig.2.

mj→i = fm (xi, xj) (1)

Figure 2: The fm function which generates the message mj→i.

An attention mechanism also determines the channel-wise correlations between con-
nected nodes.

aj→i = fatten (xi, xj) (2)
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This function computes the cosine similarity between each vectorized kth channel of
linked features xi and xj. The attention value is subsequently normalized to the range
(0, 1) by the sigmoid function σ.

The message magg
i for node vi is compiled by collecting messages from all originating

nodes with soft attention incorporated, as follows:

magg
i =

1

Ni

∑

eij∈E
aj→i ⊗mj→i (4)

where Ni represents the count of originating nodes linked to vertex vi and ⊗ symbolizes
the channel-wise multiplication.

The feature of vi is enhanced by the aggregated message function, which maintains
the same structure as the message generation function fm, but employs a different set of
parameters. These operations are shown in Fig.3

x′i = fu (xi,m
agg
i ) (5)

Figure 3: The fu function which outputs the updated node feature x′i from the aggregated
message and previous feature.

2.6 Graph Feature Extractor (GFE)

The GFE uses the GNN block described in Section 2.5 with pre-trained ResNet34
layers [19] for iterative feature extraction. Following each GNN block, edge pooling is
executed to eliminate redundant edge connections. The GFE design is modified from the
camera pose regression architecture used in [11].
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As the information is gradually passed amongst multiple views from the lower to higher
levels, there is a limited requirement to retain connections with minimal values. In this
context, the network adapts and makes decisions based on the correlation between linked
nodes, as follows:

cj→i = cs (maxpool (xi) ,maxpool (xj)) (6)

The correlation cj→i is determined using cosine similarity on the downsampled features
of xi and xj. For each node, only k neighbours with the highest correlations are retained,
while the others are discarded. Figure 4 shows the architecture to obtain the final graph
feature from the image graph with n nodes.

Figure 4: The Graph Feature Extractor (GFE) architecture depicts the ResNet34 layers,
GNNs, and dynamic edge pooling.

The features from four levels contribute to capturing both high-level and low-level
features depicted in the scene. These features are concatenated and pooled to construct
a single feature vector for the graph, representing the n initial images.

2.7 Graph Best View Finder (GBVF)

To mimic data acquisition using a UAV in a real-world scenario, where only the rough
location of the target of interest is known, a single image captured from a random initial
pose is given to the GFE block to generate a feature vector. This vector is given as input
to the LSTM block, which has a hidden size of 2048. This LSTM block outputs the
prediction for the next canonical pose. The image from this pose is used to construct a
graph, now comprising two nodes, and is once again passed through the GFE and LSTM
to predict the next view. This process is iterated n times to predict n canonical poses
using the GBVF.

The network is trained with n = 10 on the dataset of 800 objects. During training,
a method akin to teacher-forcing is adopted, i.e. the correct canonical pose is incorpo-
rated into the graph each time, even if the LSTM predicted different pose values in the
previous step. This aids the network in achieving faster convergence. Figure 5 shows the
architecture to obtain these predicted poses from the LSTM output.

Prior to training the GBVF network, the dense graphs are generated from the canonical
pose views that will be inputted into the LSTM to reduce the number of redundant graph
creations. For a single object, the graphs are stored in a single file. A batch of objects is
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Figure 5: The Graph Best View Finder (GBVF) architecture depicts the use of the GFE
to create the input feature to the LSTM.

created at the time of training using the PyTorch Geometric library [20], which forms a
larger disconnected graph for the m objects (m = batchsize).

The loss function employed to train the model is similar to the function used to balance
the position and orientation errors where ζi = (ti, ri) and ζ̂i =

(
t̂i, r̂i

)
represent the

ground-truth and predicted 6-Degree-of-Freedom (DoF) absolute poses. Three values are
for the position and four for the quaternion orientation. βp and γp are the parameters
balancing the position and orientation errors.

L =
1

Nv

∑

vi∈Vpose

d
(
ζi, ζ̂i

)
(7)

d
(
ζi, ζ̂i

)
=
∥∥ti − t̂i

∥∥
1
e−βp + βp + ∥ri − r̂i∥1 e−γp + γp (8)

2.8 Training

The network is trained to predict 10 poses corresponding to the length of the canonical
view sequences from the SAE and feature-filtering model. During training, the GBVF
was observed to generalize better when it had more objects from a single class. Training
on merely 100 object graphs did not lead to a significant reduction in loss. However,
with 800 objects, the network could generalize to unseen objects and predict viable next
canonical poses. The loss graph for the training and validation set is depicted in Fig.6.

2.9 Inference

Only objects from the validation set are considered to test the inference performance of
the GBVF. AS shown in Fig.7, the GBVF successfully generates a valid sequence of views,
where the target object is being viewed from all around, while capturing the important
features.

To evaluate the reconstruction performance of these views, TSDF-Fusion [21] is used as
a lightweight reconstruction method which can visualize the coverage performance from a
sequence of views. As shown in Fig.8, the reconstruction resulting from the set of 10 views
predicted by the GBVF is not significantly worse than that produced by a hemispherical
tessellation with 269 views.
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Figure 6: The training and validation loss versus steps (left) and epochs (right).

Figure 7: The GBVF predicts 9 views sequentially when given only the best canonical
view identified by the SAE for ModelNet40 airplane 0029.

Figure 8: A reconstruction using TSDF-Fusion [21] of ModelNet40 airplane 0029 from 269
views using the tessellated hemisphere method (left) versus the resulting reconstruction
from the sequence of 10 views predicted by the GBVF Fig.7 (Right).

3 REINFORCEMENT LEARNING FOR MULTI-AGENT GUIDANCE

As we venture into multi-drone systems in aerial photogrammetry, the complexity
of managing these systems increases exponentially. Traditional methods, which rely on
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pre-determined waypoints [22], fail to provide the flexibility and adaptability required
in dynamic environments. This necessitates exploring novel approaches that can handle
the intricacies of multi-agent missions while ensuring safety, optimization, and adherence
to mission-specific constraints. This section examines the potential of Reinforcement
Learning (RL) as a promising solution to these challenges. With its ability to handle
dynamic and uncertain environments, RL is presented as an ideal framework for real-time
decision-making and adaptation in multi-drone systems. The exploration of a Proximal
Policy Optimization (PPO) [3] RL algorithm within a simplified environment is presented
here, demonstrating its potential for further development and application to more complex
tasks.

3.1 Related Works

Advancements in Uncrewed Aerial Vehicle (UAV) designs have opened up a myriad
of applications, ranging from surveillance [23] to firefighting [24], cellular networks, and
delivery [25] applications. A notable approach towards UAV trajectory planning was
proposed by Khalil et al. [26], who developed REPlanner, an economic game-inspired
multi-agent RL algorithm. This method focuses on solving the path planning problem as
a multi-agent economic game where agents (UAVs) cooperate and compete for resources.

A different approach was introduced by Westheider et al. [27], where they proposed
a multi-agent informative path planning method based on deep RL for terrain moni-
toring scenarios using UAV teams. Their method leverages a counterfactual baseline
to learn cooperative behaviour, demonstrating superior performance to state-of-the-art
non-learning-based methods and adaptability to varying team sizes and communication
constraints.

Huang et al. [28] focused on collision avoidance in UAV swarms. They proposed a
multi-agent critic-actor learning scheme called MACA for UAV swarm collision avoid-
ance. The key feature of their method is also the use of a counterfactual baseline, which
evaluates the importance of an agent in the joint observation-action space. Simulations
demonstrated that MACA significantly outperformed state-of-the-art multi-agent RL al-
gorithms regarding average reward, failure rate, and response time.

In the context of using multiple UAVs for wireless data harvesting from distributed
Internet of Things (IoT) devices, Bayerlein et al. [29] proposed a deep RL approach
which adapts to significant changes in mission parameters without the need for expensive
re-computations or relearning control policies. They highlighted that their method can
effectively cooperate, adapt to large complex environments, and make movement decisions
that balance data collection goals, flight-time efficiency, and navigation constraints. Qie et
al. [30] developed a Simultaneous Target Assignment and Path Planning (STAPP) system
based on a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. Their
system can effectively handle dynamic environments with the execution only requiring the
locations of the UAVs, targets, and threat areas.

Lastly, Chen et al. [31] addressed the issue of incomplete information and low efficiency
in multi-UAV path planning. They introduced a centralized training–decentralized execu-
tion RL method to solve the path planning problem, demonstrating successful autonomous
path planning in an unknown environment. Each of these studies provides a unique per-
spective on using RL for managing multi-drone systems in various applications, forming
a strong foundation for exploring more advanced techniques in this field.
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3.2 The Environment and Reward Function

This work represents the environment as a two-dimensional grid of 20 × 20 squares.
Three agents are introduced into this environment, each able to move North, East, South,
West, or remain stationary. A penalty is associated with each movement to promote
efficiency, and remaining stationary is penalized to encourage exploration.

Five waypoints are randomly generated and distributed across the grid. The environ-
ment also contains an obstacle around which the agents must navigate. The characteristics
of this obstacle, including its size and location, are randomly generated for each training
episode.

When an agent reaches a waypoint, it is marked as completed, indicating the accom-
plishment of that specific goal. Each agent is rewarded upon reaching a waypoint, and an
additional reward is given to all agents if all available waypoints in the environment are
visited. This additional reward has a base value for all agents and increases proportionally
with each agent’s contribution to goal achievement.

Penalties are imposed under certain conditions to encourage safe and efficient naviga-
tion. If two agents attempt to move to the same grid cell, a harsh penalty is applied to
maintain a safe distance between them. Penalties are also imposed if agents attempt to
move outside the grid area, collide with the obstacle, or reverse their last action, discour-
aging idling and promoting momentum in a particular direction. Time is also a critical
factor with penalties applied for the excessive time taken to reach a waypoint, fostering
efficient navigation of the environment.

Each agent’s observation is represented by a 20 × 20 × 6 tensor that comprises six
20× 20 binary matrices. Each matrix represents the following:

1. Agent location channel - the cell containing the agent’s state is marked as 1, the
rest as 0.

2. Agent previous location channel - the cell containing the agent’s previous state is
marked as 1, the rest as 0.

3. Obstacle channel - cells containing obstacles are marked as 1, the rest as 0.

4. Friends channel - cells containing other agents’ states are marked as 1, the rest as
0.

5. Friends’ previous location channel - cells containing other agents’ previous states
are marked as 1, the rest as 0.

6. Targets channel - target cells are marked as 1, the rest as 0.

These matrices are depicted in Fig.9 for a showcase example.

3.3 Proximal Policy Optimization Algorithm (PPO)

The development of Policy Gradient Methods for RL with Function Approximation [32]
marked a significant advancement in RL. These algorithms estimate the policy gradient
and subsequently apply a gradient ascent algorithm to this estimate. The gradients are
obtained through automatic differentiation software, which operates on a surrogate loss
objective. These gradients are then backpropagated through the neural network to update
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(a) Grid world state in timestep t

(b) Grid world state in timestep t− 1

(c) Observation channel 1,
Current location of the
agent

(d) Observation channel 2,
Previous location of the
agent

(e) Observation channel 3,
Location of the obstacle in
the environment

(f) Observation channel 4,
Current location of the
other agents

(g) Observation channel 5,
Previous location of the
other agents

(h) Observation channel 6,
Location of the unvisited
target points

Figure 9: Figures 9a and 9b depict the current and previous states of the environment
at timestep t, along with the observations for Agent 1 (represented in red). Obstacles
are illustrated in black, target points are marked in yellow, and Agents 1, 2, and 3 are
denoted by circles in their respective colours: red for Agent 1, green for Agent 2, and blue
for Agent 3.

the parameters. PPO [3] is a method that falls under the category of policy gradient
algorithms. It is characterized as a model-free, on-policy, actor-critic, policy-gradient
method. The implementation of policy gradient methods involves the construction of an
objective function. The gradient of this function serves as the policy gradient estimator,
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as shown in Eq.(9) for the policy objective function:

LPG(θ) = Ê[logπθ(at|st)Ât] (9)

The aim of PPO is to maintain the reliable performance of Trust Region Policy Optimiza-
tion (TRPO) [33] algorithms, which guarantee gradual improvements by considering the
Kullback-Leibler (KL) divergence [34] of policy updates, while only using first-order opti-
mization [35]. The underlying principle of this approach is that by performing a gradient
ascent step on this function, the agent is encouraged to take actions that yield higher
rewards and avoid actions that could be detrimental. However, this approach has its
challenges, particularly in relation to the step size. The training process becomes exces-
sively slow if the step size is too small. Conversely, the training process is highly variable
if the step size is too large. PPO addresses this issue by constraining the policy update
by introducing a new objective function, the clipped surrogate objective function. This
function uses a clip to restrict the policy change within a small range, avoiding extensive,
potentially destructive, parameter updates.

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(10)

Implementing a clipping mechanism on the ratio prevents the policy update from becom-
ing excessively large, as the current policy cannot deviate significantly from the older one,
leading to a more stable and efficient learning process.

3.4 Architecture and Training

The PPO agent employs an actor-critic approach. The actor and critic share a similar
architecture composed of six primary layers. The architecture begins with a convolution
layer with 16 8 × 8 filters, followed by a convolution layer with 8 4 × 4 filters. These
are followed by a series of fully connected layers that utilize a Rectified Linear Unit
(ReLU) [36] activation function. The final layer for the actor consists of five outputs,
which undergo a softmax operation. In contrast, the critic’s final layer comprises a single
output without applying softmax.

Figure 10: Neural network architecture used for the actor network.

The ADAM optimizer [37] is used during training. The training process is centralized,
and experiences are shared amongst the agents. This approach leads to an improvement
in the overall efficiency and effectiveness of the training process.

3.5 Results

The performance results of the agents after 1,000 and 4,000 training episodes are pre-
sented in Table 1. These results are based on tests against 100 random initial states.
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Figure 11: Neural network architecture used for the critic network.

Figure 12: Multi-agent actor-critic system diagram.

The training process demonstrates a significant improvement across all metrics. Notably,
agents with more training exhibit a 60% increase in the total number of waypoints vis-
ited. The number of tests resulting in visiting all waypoints quadruples, and the average
number of time steps required to visit all waypoints is reduced by 23%. The metrics used
to evaluate performance are as follows:

• Average Achievement Percentage: This metric represents the average number of
waypoints achieved in relation to the total number of available waypoints.

• Total Success Rate: This metric quantifies the number of tests in which the agents
visited all waypoints.

Table 1: Performance enhancement with training progress

Number of
Training Episodes

Average
Achievement

Rate

Total
Success Rate

1000 48% 11%
4000 77% 49%

4 CONCLUSIONS

In conclusion, an investigation of the application of deep learning in optimizing multi-
drone aerial photogrammetry missions has been presented in this paper. The power of
neural networks has been harnessed to address several challenges associated with the
operation of multiple drones in this field.
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The proposed Next Best View planning approach has demonstrated the potential of
deep learning in enhancing the efficiency of data collection in aerial photogrammetry.
Training neural networks to predict views that yield more information has shown that
high-quality reconstructions can be achieved with fewer views that are more strategically
selected.

The incorporation of deep learning into multi-agent navigation brings significant ben-
efits. The proposed approach, which utilizes a MAPPO RL algorithm, exhibits consider-
able potential for further development. It can be adapted to manage tasks traditionally
handled by separate subsystems, such as path planning, collision avoidance, and task
assignment, in a single comprehensive subsystem.

Overall, this research showcases new possibilities that deep learning can bring to aerial
photogrammetry. By leveraging the capabilities of deep learning, data collection processes
can be revolutionized, making them more efficient, accurate, and adaptable. These find-
ings are anticipated to inspire further advancements in this domain and contribute to the
ongoing progress of aerial photogrammetry.
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Abstract. An approach to integrate flutter constraints in an existing environment for
aircraft design optimization is discussed, together with a methodology to generate paramet-
ric models of varying fidelities that is used to underpin the development. Geometrically
nonlinear effects in the aeroelastic response are included in the analysis and the approach
blends medium fidelity aerodynamic models with CFD data using a novel infrastructure
based on parametric ROMs and sectional polars reconstruction. A strut-braced wing air-
craft designed without stability constraints is shown to undergo a strut-driven instability
and possible solutions are assessed. Lastly, the developed multidisciplinary tools are de-
ployed in a proof-of-concept of optimization with flutter constraints.
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1 INTRODUCTION

The next generation of commercial transport aircraft needs to be capable to respond
to the exponentially increasing air traffic volume while enhancing its sustainability and
ensuring safety. A step change in aircraft performance is therefore required for which the
advancement in ultra-high aspect ratio wings and airframe (UHARW) configurations be-
comes key. In recent years, some efforts have been put forward to explore the potential of
UHARW, including the development of high-aspect ratio concepts based on strut-braced
wings (SBWs), which will be studied in this work. The concept of SBW was a common
choice in the early years of aircraft design history for low-speed, short-range aircraft. The
concept has continued to be used in general aviation aircraft for over a century. However,
the use of SBW in long-range, high-speed transport aircraft has not yet been realised,
although it was a subject of research since 1980’s [1]. The SBW concept offers several
synergistic design advantages. The strut reduces the maximum bending moment in the
wing by significant amounts, typically up to 50%, which can greatly reduce wing weight.
This allows for the increase in the wing span and reduction of the wing thickness and
sweep, without increase in structural weight. The higher wing span reduces induced drag
and lower sweep helps more laminar flow on the wing using natural and/or hybrid flow
control technologies. Early conceptual studies [2] showed an estimation of up to 9% reduc-
tion in MTOW and a fuel burn saving of up to 16% for a wide body aircraft. However, the
concept introduces the strut as new component, adding to lift, drag, and weight. There-
fore, strut bracing creates a complex, multidisciplinary design task that bears the risk of
additional wave drag and induced drag caused by the junctions between strut, wing and
fuselage [3]. This sustains the common view in the studies of new configurations for the
need of Multidisciplinary Design Optimization (MDO) methods. They are designed to
explore the interactions between all these components and to study the tradeoffs between
competing physical effects, thus enabling design space exploration. In this work we show
the early onset of flutter in SBW configurations and hence the must for including it in
any aeroelastic MDO; as it has been recently done in [4], where a multifidelity MDO is
presented both on a conventional High-Aspect-Ratio Wing (HARW) and a SBW, that
includes geometric nonlinearities and flutter constraints. The non-linear flutter calcula-
tion was based on the linear DLM method and thus limited to the deformed shape of the
FSI calculation. Precisely early work in [5] revealed that critical flutter and loads in the
analysis of a SBW would only be discovered when doing the analysis around the nonlin-
ear trim equilibrium. Another methodology and analysis for SBWs has been developed
in [6] consisting of geometrically nonlinear FE beams and medium-fidelity aerodynamic
tools enhanced with 2D corrections. However, besides the aeroelastic challenges in the
design of SBW, the aerodynamic interference between the wing, fuselage, and the strut is
a major challenge not tackled with medium-fidelity approaches: the high-fidelity aerody-
namic optimization shown in [7] led to a design with a strut producing negative lift force
while reducing the overall drag by nearly 15%. This was due to the reduction of both
shocks and separation near the wing-strut attachment. Moreover it reflects non-intuitive
outcomes of these designs and limits the use of 2D aerodynamic corrections which would
not capture critical aerodynamic effects.

Based on this, we look for an approach that captures geometrically nonlinear effects,
including linearization around trimmed flight and the subsequent stability; high fidelity
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corrections from the full aircraft model; and a flexible architecture that allows different dis-
ciplines to be brought together into an MDO process. A wide variety of MDO architectures
or formulations have been proposed in last decades, such as monolithic (MDF, IDF, All-
At-Once), and distributed (BLISS, ATC, CSSO etc.) [8], involving decomposition of anal-
yses that may be coupled, and decomposition of optimizations into parallel disciplinary op-
timization tasks coordinated by a system-level optimizer. For large scale industrial prob-
lems, the latter ones have been identified as more suitable for a direct use since it preserves
a certain autonomy to the disciplines. As a result, a distributed formulation where the op-
timization is split into sub-optimizations that take advantages of softwares and strategies
specifities, is preferred in our case. The proposed approach is based on the bi-level family
[9] implemented into the framework GEMSEO, a Generic Engine for Multidisciplinary
Scenarios Exploration and Optimization (https://gemseo.readthedocs.io/en/stable/) [10]
whose the purpose is to decompose the optimization problem in order to efficiently solve
it, without having access to the full jacobian matrix including the coupled terms.
The need for a good software architecture in complex MDO problems has been well de-
scribed in [11]. It is attained herein via a combination of the Common Parametric Aircraft
Configuration Schema (CPACS [12], a component-based data definition system for air-
craft and has already been used in various MDO-related problems [13–15]) for the model
parameterization, GEMSEO for the process implementation, and a modular description
of the aircraft object for the consistency of the models.
A variety of tools is employed for the multifidelity analysis of two different SBW models.
First, the SU2 suite [16], for the high fidelity aerodynamic analysis of the rigid configura-
tion and to correct the aeroelastic models. Secondly, aeroelastic simulations are carried
out with SHARPy [17], which couples a Unsteady Vortex Lattice Method (UVLM) for the
aerodynamics, to a geometrically-exact composite beam model (GEBM) for the primary
structural components. This approach can capture arbitrarily large wing deformations,
within the assumptions of potential-flow theory. Linearization of both structural and
aerodynamic equations about nonlinear equilibrium conditions also enable the effect of
wing deformations in flutter and other dynamic characteristics of the vehicle [18]. Re-
cently corrections from 3D CFD computations have been introduced [19], which will be
further explain herein. Flutter computations are also performed using the Doublet Lattice
Method (DLM) [20], implemented in MSc Nastran.
This paper is structured as follows: Sec. 2 presents the developed computational tools,
their interactions and workflow. Two different exercises are shown in Sec. 3: first an op-
timized SBW model that suffers from flutter instability on the strut is described; possible
solutions to push the flutter boundary are assessed. Secondly, a new preliminary SBW
design is analysed in which it is the wing that becomes unstable but at speed much higher
than the flying envelope. This is not the case when the design is optimized, and the in-
vestigation to remove the flutter via a set of moving masses is illustrated. We summarise
the overall process and main challenges in Sec 4.

2 METHODOLOGY AND TOOLS

In this section the main tools in the developed methodology are described. Equally
important the interaction between the tools and the data flow is highlighted. Ultimately
the aim is to produce an efficient framework which a) can capture geometric nonlinearities
in trimmed flight; b) includes 3D aerodynamic corrections from CFD simulations of the
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full aircraft; c) seamlessly integrates in MDO chains. This is laid out next.

2.1 Aircraft aeroelastic response

The full aeroelastic system is formed by coupling a geometrically-exact composite beam
model (GEBM) formulation [21] with the Unsteady Vortex Lattice Method (UVLM) [22]
and linearising around arbitrary configurations. This has been implemented into the code
SHARPy [17], a modular framework for aeroelastic simulations. This aerodynamic panel
method solves the inviscid, incompressible flow equations, which can be cast into the form
of the Laplace potential equation. Thus it needs a correction to account for 1) thickness
effects; 2) viscous forces; 3) compressible forces and nonlinearities in the flow. The aero-
dynamic corrections are obtained through a data-driven model order reduction tool, from
3D CFD snapshots. This tool enables an efficient prediction of aerodynamic loads at new
design points. The correction process implements also a new method to extract sectional
polars from 3D solution reconstrutions that are then fed into the aeroelastic solvers. This
process has been outlined in [19] and is further explained below. Once the (enhanced)
static aeroelastic equilibrium is found, a linearization is done and a state-space system is
built from which dynamic loads and stability of the configuration can be calculated. The
importance of geometrical nonlinear effects on new configurations can only be stated after
carrying out the simulations with those features. On SBW configurations, for instance,
the interplay between wing and strut can lead to physics not captured by linear analysis.
A proof of concept is illustrated in Figure 1 from [23] where a static and dynamic analysis
of a very flexible SBW was performed. The main modelling characteristics are highlighted
in the picture, i.e. nonlinear beams on the structure elastic axis, bound and shed aerody-
namic panels following the structure, and on top of that now we add the corrections from
high fidelity data.

Figure 1: A very flexible SBW undergoing large displacements as design in [23]

2.2 High fidelity aerodynamic corrections

2.2.1 Aerodynamic ROMs

During an MDO exercise, the ROM database(s) can be queried to reconstruct surface
solutions corresponding to a target geometry. In this context the reconstructions refer to
the geometry of the aircraft – or a specific surface such as the wing or strut – as well as
aerodynamic loads (pressure and shear-stress) on the respective surfaces.

Snapshot-based Proper Orthogonal Decomposition (POD) [24] is used to extract bases
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of the relevant quantities from an ensemble of steady-state flow solutions (or snapshots).
This can be combined with a non-intrusive recovery of new solutions, demonstrated in [25].
In this work approximate solutions at new design points are reconstructed via Radial
Basis Function (RBF) interpolation. This data-driven approach is implemented in the
code RAZOR.

2.2.2 Interface to aeroelastic solvers

As outlined in section 2.1 corrections are provided to the aeroelastic solvers in the
form of sectional polars of aerodynamic coefficients. The polars are provided at spanwise
sections corresponding to the nodes of the structural model. Figure 2 shows the correction
methodology which is performed every system-level iteration. The outputs of this process
are fed to SHARPy which applies the corrections internally.

Figure 2: Correction methodology for panels-based aerodynamics

Whenever a new point is queried, platform parameters (denoted as P ) are input to
RAZOR which computes reconstructions for this target geometry at all angles of attack
available in the ROM (Nt), the surface quantities, Pressure and Shear Stress, are recovered
along with the new geometry. The set of 3D reconstructions, L3D are then post-processed
(via Paraview) to extract sections of the wing and strut components at the locations
specified by SW and SS. The resulting L2D data (geometry and aerodynamic loads cor-
responding to each section) is then processed again with RAZOR, so that NSw and NSS

ROMs are built, with one parameter (AoA) and Nt snapshots each. The solutions are
recovered at Nt AoA or can be enriched with more angles. For each 2D solution the
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aerodynamic coefficients CL, CD, CMy are computed and assembled into a table of polars
which is then passed to the aeroelastic solvers.

2.3 Flutter optimization framework: the bi-level MDO approach

Getting more detailed designs based on higher fidelity models while keeping an af-
fordable computational time is key in the development of new configurations and can
be achieved through multidisciplinary optimization (MDO) formulations. It is the final
goal in the overall process that we are developing for the current application and for
this, a methodology is being built such that different solvers are wrapped into GEMSEO
which has been specifically developed to solve MDO problems. The solvers are in charge
of computing both static and dynamic aeroelastic responses, also including high fidelity
aerodynamic corrections as described in section 2.2 for the dynamic case. Within this
environment, the solvers are used through several disciplines and organized in order to
provide the necessary outputs depending on the workflow and dataflow.

Even though a lot of progress has been made in the MDO literature to implement
coupled gradients between different physical models, it is not always possible to efficiently
compute all the coupled terms of the gradients in an intrusive way. It is the case here,
as often, regarding static and dynamic responses. For this reason, a bi-level approach
developed in [9] is explored that consists in nesting two levels of optimization:

• the system level treats the common design variables that mostly drive the global
parameters of the model;

• the local level treats private design variables involved in each discipline.

The overall outputs for the system level are treated through a gradient-free algorithm, and
when the dedicated solvers provide the gradients in a faster way (such as via adjoints), it
can be taken into account within sub-level optimizations using gradient-based algorithms.

In the current bi-level formulation, we are precisely interested in taking into account
the non-linear flutter constraint as described in section 2.1 in addition to any kind of
static aeroelastic responses coming from a different solver. A simplified schema of such a
bi-level architecture is presented in figure 3 where the system level optimizes the model
with respect to the planform variables, the local static aeroelastic scenario optimizes
with respect to the structural thicknesses and the airfoil profiles and the local dynamic
aeroelastic scenario of interest tries to prevent the flutter to occur through the addition
of control masses (values and location). In this process, a first MDA takes place before
the local optimizations in order to compute the couplings between the different solvers
while the second MDA updates the balance between disciplines from sub-level optimal
solutions and returns the objective function and the constraints to the global optimizer.
The figure 4 gives a more detailed overview of the process with the eXtended Design
Structure Matrix (XDSM) [26]. Note details of potential static aeroelastic solvers are not
discussed in this paper as it is not relevant to the problems considered.

The correction based on high fidelity modeling (cf. section 2.2) is included within the
first MDA, and is then passed to the solvers involved in the local level. As a consequence,
it is assumed that the correction only depends on the planform variables and so remains
constant through the local optimization stages. The details of the correction for the flutter
is described in section 2.2.
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Figure 3: Simplified schema of the bi-level process

Figure 4: XDSM of the system level MDO process along with the local level scenarios for
the static and the dynamic models.
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2.4 Modular architectural design

2.4.1 Overview

An initial configuration from a conceptual stage is described in the CPACS format [12].
The link between the CPACS description of the configuration and the process has been
done through a dedicated CPACS/GEMSEO interface. While the CPACS is convenient
in order to describe the initial and optimized configurations, it is not used to exchange the
data which is being passed between the disciplines during the process. For this, a dedicated
model handler has been developed that enables to centralize the different parameters and
coupling variables which are needed to build the models within the disciplines. Both the
CPACS/GEMSEO interface and the model handler enable to build the disciplines for
the process through the GEMSEO class denoted as MDODiscipline. All those tools are
briefly described in next sections.

2.4.2 Model definition in CPACS and interface to GEMSEO

The CPACS description of the model has been considered within the process as an
ontology, which means that all the inputs and the outputs of the involved disciplines are
defined into the CPACS file. However, the CPACS name space does not natively contain
all the inputs and outputs of our required solvers and so it has been extended through an
XML Schema Definition (XSD) dedicated to our tools. An example of extended inputs
and outputs needed for the SHARPy solver are shown in Figure 5. A dedicated interface

Figure 5: Extended inputs and outputs for the SHARPy solver in CPACS

to GEMSEO, denoted CPACS/GEMSEO, has been developed in order to select any kind
of information for the process. More precisely the CPACS file along with the GEMSEO
interface has been used for three different purposes:

• to build the design space of the optimizations problems;

• to build the “shell” of the GEMSEO discipline (MDODiscipline);

• to generate 3D Computer Aided Designs (CAD) for the 3D high-fidelity CFD com-
putations (offline snapshots).
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The figure 6 gives a general overview of the process where the CPACS/GEMSEO tool
enables to generate the design space through the class CPACSDesignSpace and the process
disciplines from MDODisciplineCPACSBased, (inherited from GEMSEO class MDODiscipline).

Figure 6: Process schema for the construction of the GEMSEO design space and the
process disciplines.

2.4.3 The model handler

The disciplines that stem from CPACS/GEMSEO (MDODisciplineCPACSBased) only
define an “empty shell” while the inner model for the solvers need to be built. All solver
models need to be built from the CPACS data in order to ensure consistency through
the process. This model management through the process has thus been delegated to
a common shared object which makes the nexus between the solvers and CPACS. This
model handler is organized with a component approach where the wing, defined as a part
(of the aircraft), is based on components, composed by the different properties needed for
the solvers. The figure 7 shows a simplified version of this approach with two components,
a wing and a strut. This conforms an abstract structure from which very different solvers
can build their inputs and it also plays well with the way models are defined in CPACS.

2.4.4 The disciplines for the process

A discipline involved into the MDO process is represented through the class MDO-

Discipline in GEMSEO. This class has been derived into an MDODisciplineCPACSBased

in order to directly build the discipline from the CPACS/GEMSEO toolbox (CPACS-
StructureData). Once the solver models have been initialized from the model handler,
they can be passed to the corresponding disciplines in order to finalize the process set-up.
The general approach is depicted in 8.
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Figure 7: Component-based approach of the model handler

Figure 8: Schema process of the construction of disciplines.
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3 RESULTS

We present various analysis performed on SBW designs. The work is divided into two
major efforts: firstly we analyzed an already optimized design on which dynamic stability
was not taken into account and as a result the strut did flutter; secondly we present the
developed tools on a SBW model coming from a conceptual phase.

3.1 Flutter assessment on a SBW designed without stability constraints

Two models from [27, 28] have been combined for the aeroelastic analysis and are
overlapped in Fig. 9. The structural model is based on beams to which lifting panels
are attached; the high fidelity aerodynamic mesh has been adapted to a mesh for the
SU2 suite. For the analysis we will consider one critical point in the structural sizing

Figure 9: Combined models (CFD mesh and panels representation from structural model)

with flight conditions (U∞ = 252.8m/s M∞ = 0.78, Altitude = 7000m). Since flutter is
already encountered at this point, as we will see below, no further exploration was carried
across the flight envelope, and the investigation has been instead on the potential design
improvements to the aeroelastic stability characteristics. The first ten structural natural
frequencies are given in Table 1. Note the existence of symmetric and anti-symmetric
modes in the wing with very close frequencies. These are depicted in Fig. 10, where the
first five modes are shown.

The panel shapes have been constructed from the beam-model displacements and rota-
tions. They are use in mapping structural deformations onto 3D mesh displacements for
the high fidelity analysis: at each panel corner there will be a radial-basis kernel mapping
displacements from the panels onto the CFD moving markers (the solid boundaries of
wing and strut). With the deformation of wing and strut obtained from interpolation for
each modal shape, a mesh deformation scheme within SU2 is launched in order to attain
a suitable model for the CFD.

It was found that while convergence of the mesh deformation routines could be achieved
without major issues by tweaking the nonlinear steps and the total number of iterations,
the resulting mesh would not yield good steady simulations. These problems have been
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

(e) Mode 5

Figure 10: First five structural modes

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

417



A. Cea, P. Nagy, N. Roussouly, et al.

Table 1: First ten natural frequencies of the wing-fuselage structural model.

Mode Natural frequency
[rads/s]

1 4.79648
2 5.08188
3 10.6141
4 11.4289
5 12.0282
6 12.6861
7 17.4762
8 18.7355
9 23.4287
10 23.5248

previously reported, in [7] for instance, where overset meshes are used to avoid negative
volumes. A combination of using an inverse volume mesh deformation scheme together
with and extremely low tolerance (ϵ ≈ 10−15) and applying a filter at the fuselage con-
nections to bring displacements to virtually zero, finally led to convergent simulations of
the steady CFD using an Euler solution. Since the model was provided in Nastran, a
DLM-based flutter analysis was carried out first, but with the steady simulations around
the modal shapes converged it was expected to move into a solution with higher resolution
via the Harmonic Solver recently built into SU2 [29]. Further issues of convergence made
us to fall back to the DLM but this time with corrections from the CFD at very low
frequencies where convergence could be attained.

3.1.1 Baseline flutter analysis

The flutter analysis on the reference configuration reveals the instability is triggered
before the design cruise speed: considering the following flight conditions, U∞ = 252.8m/s
M∞ = 0.78, Altitude = 7000m, which were set as one corner point of the design envelope,
the flutter speed is found at ≈ 170 m/s (33% below cruise speed). The damping and
frequency evolution with velocity is results are depicted in Fig. 11. The reduced frequency
of flutter can be extracted from the plot and comes at around 0.072. The instability occurs
at the interaction between modes 3 and 5. We can also see their anti-symmetric counter
parts (modes 4 and 6) becoming unstable. The flutter mechanism is rather unconventional,
since the wing bending mode also sets the strut to significant motion, and it interacts with
the closest strut-driven mode.

The CFD corrections are introduced via a factor for each modal component which rep-
resents the ratio between those values computed by the DLM and the Harmonic Balance.
The factor is computed at a frequency close to zero and propagated as a constant to the
higher frequencies (considering that flutter occurs at a reduced frequency of only ≈ 0.072,
this approximation should not be too far off). Therefore a set of Generalized Aerodynamic
Forces (GAFs) is produced at a selected sampling frequencies, and they are corrected to
match the high fidelity data. An in-house P-K solver solves for the flutter speed with
these GAFs as inputs. Fig. 12 shows the GAFs after including the corrections. While the
GAFS do not significantly vary after adding the CFD solution, the flutter onset has been
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Figure 11: Vg-Vf plots obtained in Nastran for the reference configuration

seen to be very sensitive to modelling details and the additional fidelity brought about by
the aerodynamic corrections decrease the flutter speed.

This is seen in the stability plot of Fig. 13. The analysis was carried out with 6
modes to keep resources to a minimum. It is found is that the flutter speed decreases
from 173 m/s to 137 m/s, i.e. a 20.9% reduction. This makes even stronger the case
about designing this type of aircraft with active stability constraints. It also outlines why
flutter margins play a crucial role in the certification process. In the next section we will
look at possible solutions to push the stability of the current configuration above design
points. The next step in the analysis would be to perform a nonlinear assessment of the
flutter speed but since the aircraft is already unstable a parametric analysis under linear
assumptions is carried out instead in order to study potential improvements.
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Figure 12: GAFs of the first 6 modes after CFD correction, reduced frequencies from 0
to 1, imaginary (circles) and real (squares) parts.

Figure 13: Stability plots for airspeed near the flutter onset after introducing CFD cor-
rections
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3.1.2 Parametric analysis for flutter relief

Since the reference design was not designed with flutter constraints and the analysis
reveals some issues in the design of the strut, we set up to explore possibilities to enlarge
the flutter margins. These are not definitive but can give good insights for future endeav-
ours in SBW configurations. We show the effect of increasing the strut size and of moving
strut masses.
Making a bigger strut seemed the first plausible option to improve the stability of the
reference configuration. A Factor, α, is applied to the chord dimension along the strut,
while the thickness-to-chord ratio of the airfoils is kept constant. The structural model is
scaled accordingly, increasing the beam area by α2 and the moment of inertia by α4. In
Table 2 we can see that indeed significant improvements can be attained.

Table 2: Flutter assessment when changing the strut chord

flutter fluttermode factor
152.665 5 0.85
170.423 3 1
203.342 3 1.1
193.152 10 1.2

As seen in the damping evolution of Fig. 14, a 10% increase in the structural factor
α leads to a nearly 20% rise in the flutter. The analysis illustrates that stability and

Figure 14: Vg-Vf analysis for the strut extension, α = 1.1

strut-size don’t correlate monotonically. Thus this can be a good variable to include as
part of an optimization problem.
Next we move the lumped masses on the strut together in the chordwise direction. As
in classical flutter problems, it proves to be a very effective solution. It should be noted,
however, that the ranges in which the masses are moved are likely not feasible due to
other physical constraints. Results are shown in Table 3.
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Table 3: Flutter assessment when moving strut lumped masses

flutter fluttermode factor (% chord)
170.423 3 0
162.767 3 -0.05
156.634 3 -0.1
151.539 3 -0.15
147.136 3 -0.2
180.696 3 0.05
197.31 3 0.1

259.569 14 0.15
213.7 14 0.2

Interestingly, the effect of moving the masses is that mode 3 (and 4, its anti-symmetric)
can be made stable, thereby significantly increasing the flutter speed. This is shown in
Fig. 15.

Figure 15: Vg-Vf analysis for moving lumped masses, +0.15% strut chord

Illustrated in Fig. 16, modes 3 and 4 have been damped out, but as modes 13 and 14
(symmetric and anti-symmetric) move down the velocity-axis, the flutter speed is reduced
as the masses are further displaced.

These results show the risk of launching the optimization without flutter constraints:
the strut turn out to be too small for the stability integrity. We have shown that while
redesign to push the stability boundary would be feasible, this would have led to additional
costs and also undermine the overall design. In the next section results from a different
Strut-Braced Wing design are presented.

3.2 A new SBW design

Having established the need for computational tools that work together in the design
phase and account for a broader spectrum of the physics of the problem, we present
the progress made in that direction in this section. A CFD campaign was conducted

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

422



A. Cea, P. Nagy, N. Roussouly, et al.

Figure 16: Vg-Vf analysis for moving lumped masses, +0.2% strut chord

around parametric models that are produced as a subset of the design space. A nonlinear
flutter analysis on a preliminary unoptimized configuration shows a wing-driven flutter
well above the cruise speed.

3.2.1 CFD Campaign and ROM reconstruction

Aerodynamic assessment of a parametric model is carried out first via CFD compu-
tations at a set of geometry points given by Design of Experiments (DoEs). After the
initial DoE, additional simulations are performed to enrich the sampling of the design
space. From the collection of solutions aerodynamic ROMs are constructed from which
aeroelastic computations can then be enhanced in an efficient manner. The parameter
space is derived from six system-level design variables describing the wing planform, one
parameter describing the incidence of the strut, and the freestream angle of attack. The
geometric parameter space is shown in Table 4. Design variables describing the airfoil
shape of the wing have been omitted with the consideration that minor variations in the
airfoil shape would have a marginal effect on the (integral) aerodynamic performance
which is the relevant measure for aeroelastic corrections. The incidence angle of the strut
is a necessary parameter to attain the requirement that in cruise conditions the strut
generates zero-lift.

During the analysis, ROM database(s) can be queried to reconstruct surface solutions
corresponding to the target geometry defined at the system level and per iteration. In this
context the reconstructions refer to geometry on the wing and strut as well as aerodynamic
loads (pressure and shear-stress) on the respective surfaces.

In total 97 distinct wing planforms are considered, including the baseline configuration.
For each, a geometry with the minimum and maximum strut incidence is generated, so
that a total of 195 geometries are sampled. CFD computations for every geometry are
computed at four AoA: –5.0o, 0.0o, 2.5o and 5.0o. Thus the ROMs are constructed from
780 snapshots.

CAD files of the geometries are generated via the GEMSEO/CPACS interface, together
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Table 4: Geometric parameters involved in the construction of CFD ROMs

Geometric Parameter Minimum Maximum Baseline

Root chord 2.70 m 3.30 m 2.985 m
Tip chord 0.90 m 1.30 m 1.045 m
Semi-span 28.70 m 33.0 m 31.221 m

Sweep 5.0o 15o 12.5o

Twist at kink -1.0o 0.0o -0.5o

Twist at tip -2.0o -0.8o -1.0o

Strut incidence -3.0o 0.0o -2.0o

with the Tigl [30] library. After obtaining a mesh for the baseline geometry, the subsequent
geometries are meshed in an automated manner. A consistent mesh topology across
all snapshots is a requirement for the ROM. Therefore, on the wing and strut surfaces
structured meshes are created with consistent number of divisions on both the chordwise
and spanwise directions. The rest of the aircraft surface and the volume are meshed with
an unstructured algorithm. The surface mesh corresponding to the baseline configuration
is illustrated in Figure 17 and in Table 5.

Table 5: Main characteristics of the mesh for the baseline geometry

Number of Elements Surface elements Wing surface elements Strut surface elements
31,078,102 601,258 360,608 69,946

Figure 17: Surface mesh and symmetry plane of baseline configuration.

Steady, Reynolds-averaged Navier-Stokes (RANS) solutions are computed using the
CFD solver of the SU2 code. The convective fluxes are solved to second-order accuracy
using the Roe scheme with the MUSCL approach. Turbulence is solved to first-order using
the Spalar-Allmaras turbulence model. Approximate time to obtain each solution on 144
cores was 8 hours. The fixed freestream conditions are presented in Table 6. Figure 18
shows the Cp and Cf on the aircraft surface, with the main flow features observed for this
strut-braced geometry.

Two ROMs are built, for the wing and strut surfaces respectively. As mentioned
before the fields of interest are the geometry and aerodynamic loads, i.e. x, y, and z-
coordinates, pressure and shear stress components are reconstructed. As an additional
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Table 6: Freestream conditions of the test case

Mach number Reynolds number Temperature
0.735 16,659,200 222.7730 K

(a) Cp

(b) Cf

Figure 18: CP and Cf profiles on CFD solution of the baseline configuration
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step, the ROMs are used to identify the cruise AoA for a given wing planform as well as
the strut incidence so that the strut contributes zero lift. Figure 19 shows the Pressure
and Skin Friction Coefficient contours respectively for the baseline configuration in cruise.
It follows from the comparison that most flow features are approximated well but there
are clear inaccuracies, most apparent in the reconstruction of shear stress. Figure 20
shows the same comparison on the strut.

In Table 7 the lift and drag coefficients are compared against reference solutions. The
reconstruction of RAZOR shows some discrepancy compared to the prediction, since the
strut does genereate some lift, as well as the wing generates about 1.77% lower lift than
the target. The reference CFD for the same conditions is much closer to the desired cruise
condition: the target lift is achieved (with a discrepancy of 0.34%) and the lift generated
by the strut is an order of magnitude lower than the reconstruction. In dimensional terms,
the strut generates only a marginal 49.5 N lift compared to the approximately 300 kN lift
of the wing. The drag coefficients obtained via RAZOR match the reference values well.
Note however the very large drag contribution of the strut in comparison to the wing.
During the optimisation phase the wave drag of the strut must be reduced substantially by
finding good values for the t/c ratio of the strut. In summary, the methodology for finding
the cruise condition by leveraging the aerodynamic ROM works well and the models can
be used to correct the aerodynamics of the aeroelastic solver.

Table 7: Comparison of coefficients obtained from RAZOR and reference CFD for the
baseline configuration in cruise.

CL (RZR) CL (CFD) CD (RZR) CD (CFD)
Wing 0.38016 0.38833 0.011993 0.011909
Strut 0.000410 0.000064 0.008344 0.008030

The solutions are processed according to the aeroelastic correction methodology and
the resulting polars are compared. 4 reconstructions and CFD solutions were computed
at –5.0o, 0.0o, 2.5o and 5.0o freestream AoA. Plots are shown for sections at the root,
midspan and tip locations in Figure 21. The values in general show good agreement,
however the 5o case at the wingroot and wingspan shows significant discrepancy.
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(a) CP

(b) Cf

Figure 19: Comparison of aerodynamic loads on wing obtained from RAZOR recon-
struction (black lines) and reference CFD solution (coloured contours) for the baseline
configuration in cruise.
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(a) CP

(b) Cf

Figure 20: Comparison of aerodynamic loads on strut obtained from RAZOR recon-
struction (black lines) and reference CFD solution (coloured contours) for the baseline
configuration in cruise.
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Figure 21: ROMs and CFD polars
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3.2.2 Aeroelastic correction process

The general correction process has been presented and validated in [19] where the polars
for the whole aicraft rigid model were compared between the pure CFD solution, the
ROMs computed by RAZOR and the enhanced SHARPy model. It can be seen that they
agree well. The process is summarized in Figure 22. The ROMs in the previous section

Figure 22: Design process with aeroelastic analysis

are obtained in an offline phase and enter the optmization to enhance the aeroelastic
solution, initially on the nonlinear static equilibrium, then on the dynamic state space
system produced on the linearized structural model and UVLM aerodynamics. This
enhaced LTI system is used to calculate flutter or other dynamic figures of merit. The
resulting model of the optmization should then enter a detail phase where the various
assumptions and corrections are to be assessed using high fidelity analysis.

3.2.3 Stability preliminary configuration

We set out first to calculate the dynamic stability in a preliminary design that is still to
be optimized, to find out that flutter does not occur anywhere close to the cruise speed,
which probably indicates an overconservative design. Contrary to linear calculation of
the flutter that can be computed directly, the nonlinear flutter entails first the compu-
tation of the steady equilibrium for the cruise angle of attack. Two different modelling
assumptions are made in which (a) aerodynamic panels of the strut are not considered,
and (b) aerodynamic panels in the strut are included, which have a clear effect on the
wake behind the junction area. Freestream conditions are those in Sec. 3.2.1.

As seen next, since the flutter mechanism in this model is wing-driven, having aero-
dynamic on the strut makes a difference but it is not critical in the flutter calculation.
The root locus plot for the case with aerodynamics on the strut is shown in Figure 23.
The first torsional mode crosses the imaginary axis first, at which point the stability of
the wing is compromised. The usual drop in the frequency of the torsional modes is also
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observed. The modal shapes and natural frequencies of the wing around the nonlinear

Figure 23: Root locus diagram

equilibrium can be extracted. Figure 24 presents the first out-of-plane (OOP) bending
modes, with natural frequencies of 9.4, 27.4, 31.7 rads./s respectively. Similarly, Figure
25 shows the first two torsional modal shapes, whose natural frequencies are 65.2 and 88.6
rads/s. Having pinpointed the modal shapes driving the flutter, an assessment is carried

Figure 24: First three OOP bending modes

out with and without aerodynamics on the strut and for a range of Mach numbers. A
ratio between the flutter speed and the flying speed is introduced for presenting the re-
sults in Figure 26. What the analysis reflects is that the wing is very stiff in torsion. This
design needs to be optimized through the MDO process described in section 2.3. The way
how the flutter constraint behaves through the local dynamic aeroelastic optimization is
shown in the next section.

3.2.4 Optimization of the flutter mechanism

This section shows what happens during a system level iteration of the process de-
scribed in section 2.3, where the flutter optimization would be executed either sequen-
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(a) First one (b) Second one

Figure 25: Torsional modes

Figure 26: Flutter velocity ratio evolution with Mach number
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tially to any static aerostructure optimization, or in parallel to this, from a fixed planform
description provided by the system level optimizer.

Conversely to the previous overconservative design (cf. section 3.2.3), we thus start
from an assumed optimized design that leads to clear instabilities at the cruise speed
within 15% margin. This design is obtained by reducing the structural thicknesses, along
with artificially moving secondary masses (engine, tanks, components, etc) slightly back-
ward with respect to the elastic axis of the wing. The conditions are the same than the
previous section 3.2.3, and the aerodynamic panels on the strut are taken into account.

Our objective is to vanish the flutter by adding control masses whose values and chord-
wise locations are optimized. The optimization problem is formulated as

m∗ = argmin

(
lumped mass(m)

lumped mass0

)
s.t.

{
flutter constraint(m) ≤ 0

mlow ≤ m ≤ mup
(1)

where m = [m
(i)
val,m

(i)
loc] with i ∈ (root, kink, tip) corresponds to mass values and chordwise

locations at the root, kink and tip sections of the wing, and lumped mass defines the
total lumped masses included into the model (secondary masses plus control masses)
with lumped mass0 = lumped mass(m = 0). From the vector of design variables m, the
total control mass values (resp. locations) are linearly distributed along the wing for each
segment root/kink and kink/tip.

The flutter constraint is more precisely formulated as

flutter constraint(m) = 1− flutter velocity(m)

SM× cruise velocity
(2)

where SM = 1.15 defines the safety margin. The value of the flutter constraint at initial
design point is 0.055. The optimization problem in equation 1 is solved using the gradient-
free algorithm COBYQA [31] which is preferred to a gradient-based approach since the
SHARPy solver does not provide any analytical gradient.

The results of the objective and constraint history are presented in figure 28 where the
objective is shown through the blue line while the constraint is plotted through the back
ground color (green for feasible and red for non-feasible). It clearly shows that the flutter
occurs at the initial point and vanishes throughout iterations. The figure 28 presents the
evolution of the design variables, where it can be observed that additional mass is mainly
put at kink location, close to the leading edge. This result was well expected since the
activation of the flutter was initially induced by moving secondary masses backward. The
additional control masses try to balance the instability that may appear with the torsion
of the wing. This analysis shows how the flutter can be removed by optimizing control
masses within an iteration of the bi-level process described in section 2.3. It must be
noted that during the bi-level process, the flutter optimization will be performed only if
the flutter occurs, and not at all iterations of the system level scenario.

4 CONCLUSIONS

We have discussed a numerical strategy for integrating flutter constraints in an aircraft
design optimization environment. It has required several methodological developments:
first, a generic parameterization of the vehicle geometric and structural definition was
build to enable automatic generation of models for the different solvers. Second, a bi-level
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Figure 27: Objective (blue line) and constraint (background color) history of the flutter
optimization.

Figure 28: Design variables history of the flutter optimization. Indices (0), (1) and (2)
correspond respectively to root, kink and tip position.
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optimization strategy has been adopted for the integration of the flutter constraints as an
additional optimization loop to any baseline aerostructural optimization software. Finally,
for application in the design of transonic wings with very high aspect ratio, sectional
polars are reconstructed from a set of parametric reduced-order models obtained from
high-fidelity RANS simulations. They are then integrated into the lower fidelity unsteady
aerodynamic models. The polar reconstruction process is then exemplified on strut-braced
wings, as well as its flutter characteristics, both from parametric studies and preliminary
optimization.
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Abstract Hybrid-electric aircraft (HEA) are one of the approaches currently under study 

by the industry to reduce emissions and tackle climate change. The use of batteries and 

high-power electrical equipment in such aeroplanes poses new challenges that are not 

usually found in conventional gas-turbine vehicles, such as the necessity of thermal 

management systems (TMS). In this paper, one of these systems is developed and 

integrated to the 50 passenger HEA developed in the scope of Futprint50.aximum 300 

words). 
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1. INTRODUCTION 

According to NASA “Global warming is the long-term heating of Earth’s surface observed 

since the pre-industrial period (between 1850 and 1900) due to human activities, primarily 

fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s 

atmosphere” [1]. It is evident that aviation is a contributor to this phenomenon, as aircraft 

burn fossil fuel. Up to 3.5% of the anthropogenic climate impact may be cause by aviation 

[2]. This impact includes, but is not limited to, CO2 – which is the focus of most research due 

to its long-term effects. Other combustion products, such as NOX and water vapour also 

contribute to global warming. 

 Given the context above, government, industry (OEMs, airlines, and suppliers) and 

academia have been directing their efforts to reduce and, eventually, eliminate emissions. The 

first group’s effort is exemplified by the European Commission’s FlightPath2050, in which 

the EU’s vision for the aerospace sector through 2050 is reported [3] and by the funding of 

projects such as Futprint50 – a joint effort between industry and academia to accelerate the 

entry into service of a hybrid-electric aircraft [4]. 

 The concept aircraft under study, shown in Figure 1, is a 50 PAX, battery-hybrid-

electric, based on the ATR42-500's mission and requirements. Some top-level aircraft 

requirements (TLARs) are shown in Table 1. These values were obtained from market 

analyses, which are fully explained in the references [5] [6]. 

 

 
Figure 1: Concept aircraft 

Table 1: Selected TLARs [5] [6] 

TLAR FIGURE 

Design cruise speed Mach 0.5-0.55 
Design payload 5300 kg 
Design range 400 km + reserve 

Reserve fuel policy 185 km + 30 min holding 
Take-off field length mtom, sl, isa, paved) ≤ 1000 m 

Landing field length (sl, isa, paved) ≤ 1000 m 
Maximum operating altitude 7629 m (25000 ft) 
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In addition to the most evident differences of a HEA when compared to a conventional 

aircraft, such as the use of electric motors and batteries, the adoption of such powertrain 

creates the need for  thermal management: “the ability to manage heat transfer between heat 

sources and heat sinks  to  control  the  temperature  of  aircraft  subsystems/components  in  

order  to  achieve  comfort, safety and efficiency” [7]. In other words, a thermal management 

system is required to ensure that electronics and batteries are within their temperature 

operating ranges. In Figure 2 a schematic of the powertrain is shown. 

 

 
Figure 2: Hybrid electric powertrain 

As seen thus far, the conceptual study of an aircraft involves multiple technologies that 

need to be integrated and have their impact on each other understood – a task that was done in 

SUAVE (Stanford University Aerospace Vehicle Environment). This is an open-source, 

multi-fidelity, python-based, conceptual level aircraft design environment developed with the 

aim of studying new technologies applications to arbitrary aeroplane shapes, i.e. not 

necessarily conventional “tube and wing” shape [8].  

 

2. METHODOLOGY 

2.1 SUAVE Framework 

Changes to SUAVE were done in order to adapt it for Futprint’s goal: to design a 

hybrid-electric aircraft. These are mainly residuals in the iteration processes (for further 

information reference [9] should be consulted) but the overall sizing process is shown in 

Figure 3. 

 The design process begins with definition of TLARs and fixed parameters followed by 

vehicle definition (aeroplane’s geometry is defined). Then, mass may be estimated by 

different methods, such as specific power. As the power is still to be calculated, iterations are 

necessary to adjust the component’s mass. Finally, the mission is solved based on all the 

previous information and the “synergies and interaction”, that represents the balance of forces 

and power requirements [9]. 

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

441



First A. Author, Second B. Author and Third C. Author 

 
Figure 3: Sizing loop in SUAVE [9] 

 An important part of SUAVE is the energy network class. This is where all the energy 

“consumers” and “generators” are mathematically linked at code level. As in Figure 2, all the 

conventional components are present, but now in conjunction with electrical equipment. The 

main outputs of this class are the thrust vector and fuel mass flow rate. 

 

 
Figure 4: Representation of energy network in SUAVE 

 

2.2 Thermal Management System (TMS) 

 

 To better understand the influence of a thermal management system and how it 

physically integrates to the powertrain, Figure 5 and Table 2 are discussed. The schematic 

shows the different components that require cooling (blue boxes) and their respective cooling 

loops (yellow, CL, boxes). The table, on the other hand, shows the different cooling 

requirements for the components shown in the figure. A careful analysis shows that not only 

the requirements are significantly different but also that some level of system segregation is 

required – this is why four subsystems were designed (CL 1 through 4). 
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Figure 5: Electrical powertrain and TMS 

 
Table 2: Thermal requirements for electrical components 

COMPONENT OPERATING TEMPERATURE [10] EFFICIENCY 
[10]  

COOLING METHODS [10] 

Batteries 25°C (nominal) 92-96% 
Convection, cold plate, 
dielectric oil immersion 

[11], tab cooling [12] 

Inverters/Converters -20 to +75°C 97-99% 
Convection, cold plate, 

cryogenic 

Electric Motors -30 to +150°C 95-99%  Liquid, cryogenic 

 

 With the information discussed above and considering the mission profile, Table 3 

was created. It shows the different cooling loops, the main component they must cool and the 

thermodynamic cycle chosen to cool it. 

 
Table 3: Relationship between cooling loops, components to be cooled and thermodynamic cycle (see Figure 5) 

COOLING  
LOOP 

COMPONENTS TO COOL CYCLE 

CL 1 & CL2 Batteries 
Liquid Cooling (LCS) + 
Vapour Compression 

(VCS) 
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CL3 & CL4 
Electric motors, eBoosters, 

inverters, converters, 
controllers 

Liquid Cooling (LCS) 

 

 
a) 

 
b) 

Figure 6: Cooling loops chosen for the aircraft 

 Once the thermal management system concept was established, detailed modelling 

was performed with Matlab/Simulink using textbook equations and reference papers. These 

models were later used to generate datapoints which, then, became part of the surrogate 

models for SUAVE. 

 

2.3 Simulation parameters 

 

 In a hybrid electric aircraft, it is important to define the degree of hybridization (DoH). 

Several definitions may be found in literature [13] [14], and in this project, it was defined as 

the percentage of total installed power that comes from electrical engines: 

 𝐷𝑜𝐻 =
𝑃𝑒𝑙𝑒
𝑃𝑡𝑜𝑡𝑎𝑙

 (1) 

 It is also necessary to define the energy management strategy (EMS), i.e. how the 

energy will be split throughout the flight. A few different concepts were developed and the 

one selected for this paper is illustrated in Figure 7. While the former is a simple example on 

the possible variations, the latter is the EMS adopted during this specific case study. Positive 

values mean that the device is generating or receiving energy, while negative values indicate 

that energy is being extracted by that component. The values represent percentages with 

respect to the equipment’s nominal power. In other words, -1 for motor turboshaft (red) 

means that the motor/generator (M/G in Figure 2) connected to the turboshaft is extracting 

energy up to 100% of its own capacity – not that it is extracting 100% of the shaft energy. 

Likewise, 1 means that the component is operating at 100% its own capacity. 
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Figure 7: EMS chosen for this case study (EMS 3) 

 With the definitions established, mission and electric powertrain parameters were set 

as in Table 4. Several other inputs were defined but omitted here for concision purposes. 

 
Table 4: Selected mission parameters 

PARAMETER VALUE 

MISSION 
Distance 400 km 

Cruise speed 450 KTASi 
Cruise altitude 17000 ft 

ELECTRICAL POWERTRAIN 
Hybridization of power 20% 

Bus voltage 800 V 
Battery specific energy 500 Wh/kg 

 

3. RESULTS AND DISCUSSION 

3.1 Aircraft and mission 

 The mission profile generated in SUAVE is shown in figuresFigure 8 and Figure 9 was 

achieved for an aircraft with the characteristics displayed in Table 5 (SUAVE outputs). It 

should be noted that the output reproduced from the integration framework are numeric 

results of iteration processes, based on assumptions adequate for a conceptual study and, 

therefore, not all figures are significant. 

 

 

 

 
i True airspeed in knots 
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Table 5: Selected SUAVE outputs 

PARAMETER VALUE 

MASSES 

MTOM 18094 kg 

Battery mass 192.37 kg 

Electric motors, generators and ESCs 204.44 kg 

High power electrical cables 100 kg 

VCS (TMS CL1 and CL2)ii 70.26 kg 

LCS (TMS CL3 and CL4)iii 44.81 kg 

WING GEOMETRY 

Wingspan 26.75 m 

Wing wetted area 109.34 m2 

Aspect ratio 13.50 

 

 

 
Figure 8: Mission altitude profile 

From the results shown, the reader may quickly draw the conclusion that altitude 

requirement was met but speed was below the value stablished by the TLARs. Battery mass 

corresponds to approximately 1% of MTOM, and almost half of the whole electrical 

powertrain, while the total TMS contribution is about 0.6% of MTOM. 

 

 
ii Mass value for both VCSs combined. 
iii Mass value for both LCSs combined. 
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Figure 9: Mission Mach number profile 

  

 

2.2 Thermal Management 

 

 
Figure 10: VCS heat load during the mission 

With regards to the heat loads for the TMS – shown in figures Figure 10 and Figure 11 

–, it follows the trend expected from energy management strategy and mission profile. 

During take-off and climb, the heat load is high because of the required power. 

Specifically on the VCS, a slight increase in heat load can be identified, reaching its 

maximum value at cruise. This is explained by the functioning of a gas turbine engines: as 

they are volumetric machines, with the increase in altitude and consequent decrease in 

density less air mass is admitted at the inlet for a given volume, which implicates in a 

decrease in power (other parameters remaining constant). From a powertrain point of 

view, this decrease in power is compensated by increase in power from the electrical 

engines and, therefore, more energy drawn from the batteries, that implies in higher heat 
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loads. On descent, the electrical motors are in idle and, as such, do not draw energy and 

do not generate any heat load. The go-around climb, flight to alternate destination and 

reserve follow the same logic as previously explained in this paragraph. 

 

 

 
Figure 11: LCS heat load during the mission 

  

 In addition to heat load, which is translated into increase in aircraft empty weight 

and power consumption of the TMS, another important parameter is the required ram air. 

It should be reminded that the atmosphere is the final heat sink of the thermal cycles 

shown in introduction and, in these specific systems, the heat is dissipated in to it at the 

ram air heat exchanger (LCS case) or condenser (VCS case). Figures Figure 12 and Figure 

13 show the ram air consumption/requirement throughout the mission. The peaks 

correspond to low altitude (higher temperature) and low speed situations – conditions less 

favourable to heat exchange when compared to cruise, when lower values may be found. 

Finally, the reserve section presents high values because it is also close to ground. It 

should be noted that ram air consumption translates into drag. This is both due to pressure 

drops in the ducting and heat exchanger and difference in inlet and outlet speeds (change 

in momentum). 

 A big difference between both cycles is seen – about one order of magnitude. This 

is explained by the nature of each sub-system: while the VCS can bring the temperature of 

the working fluid lower than the atmospheric, hence, increasing the temperature difference 

at the condenser and improving the heat exchange, the LCS cannot do so. Therefore, more 

air flow is necessary to cool the working fluid (EGW). 
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Figure 12: Required ram air for the VCS 

 

 
Figure 13: Required ram air for the LCS 

 

2.3 Emissions 

 Total emissions are shown in Table 6. These parameters may be compared with other 

aeroplanes generated by SUAVE under different initial conditions. They are also important 

figures of merit that might indicate the viability of the design from environmental point of 

view from the very beginning of the design process. 
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Table 6: Emissions of the case study aeroplane 

SUBSTANCE VALUE (kg) 

CO2 3121.068897 
CO 2.606890116 

NOX 12.27984153 
 

4. CONCLUSIONS 

 This study shows the capabilities developed by Futprint50 in SUAVE and selected 

results of the project [15] with particular emphasis on thermal management system. The 

aircraft generated partially matches the TLARs, with cruise speed below the one established 

but fulfilling range and reserves requirements. In addition, the thermal management system 

results show consistency with what is expected through the mission profile. 

 Power consumption could be improved with the use of passive devices, such as skin 

heat exchangers and phase change materials. They have the potential to diminish the ram air 

consumption as well, but careful trade-offs should be done to take into account their impact 

on weight.  

 Technology improvements could also lead to reductions in the parameters discussed. 

There are two main approaches to this: improving the thermal components, through increase 

in specific power, for example, and with the increase in electrical equipment operating 

temperatures. The latter could lead to bigger temperature differences in heat exchangers, 

which implies in smaller heat exchangers. It also opens the possibility for synergies, to use the 

heat absorbed in other equipment and systems. 

 The data generated and conclusions drawn in this study and other Futprint50 analyses 

can be used to elaborate roadmaps to inform academia, industry, policy makers and general 

public on the challenges and how to better direct the ecosystem efforts towards greener 

aviation. 
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Abstract. This work aims at developing new methodologies to optimize computational
costly complex systems (e.g., aeronautical engineering systems). The proposed surrogate-
based method (often called Bayesian optimization) uses adaptive sampling to promote
a trade-off between exploration and exploitation. Our in-house implementation, called
SEGOMOE, handles a high number of design variables (continuous, discrete or categor-
ical) and nonlinearities by combining mixtures of experts for the objective and/or the
constraints. Additionally, the method handles multi-objective optimization settings, as it
allows the construction of accurate Pareto fronts with a minimal number of function eval-
uations. Different infill criteria have been implemented to handle multiple objectives with
or without constraints. The effectiveness of the proposed method was tested on practi-
cal aeronautical applications within the context of the European Project AGILE 4.0 and
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demonstrated favorable results. A first example concerns a retrofitting problem where a
comparison between two optimizers have been made. A second example introduces hier-
archical variables to deal with architecture system in order to design an aircraft family.
The third example increases drastically the number of categorical variables as it combines
aircraft design, supply chain and manufacturing process. In this article, we show, on
three different realistic problems, various aspects of our optimization codes thanks to the
diversity of the treated aircraft problems.

Keywords: Bayesian optimization, multi-objective problems, mixed-categorical vari-
ables, aircraft design, aeronautical applications

1 INTRODUCTION

For the last few decades, the aeronautical industry has been essentially driven by incre-
mental improvements based on aircraft design optimization [1]. The use of computer sci-
ence allowed to reuse well-proven design processes and to benefit from preexisting results
to reduce the time dedicated to development. Nonetheless, the forthcoming challenges
awaiting aircraft design call for large-scale improvements to meet future expectations in
terms of overall environmental impact, noise reduction and cost-effectiveness [2]. These
large-scale improvements, considered through novel aircraft configurations, involve an
increased proximity between Aerodynamics, Propulsion and Structural mechanics, thus
requiring to explore coupled and uncharted physics. As is the case for many industrial
complex systems, some powerful optimization algorithms for aircraft design are needed.
The H2020 European project AGILE 4.0 (2019-2023)1 [3], led by DLR, has identified sev-
eral challenging application cases linked to Multidisciplinary Design Optimization (MDO)
methods [4] and Model Based Systems Engineering (MBSE) technologies [5] that will re-
quire innovative and sustainable aircraft configurations in the years to come [6]. The
main objective is to reduce the environmental impact in terms of fuel consumption, waste
and emissions associated with all the aeronautical system activities and operations. This
purpose requires extending aeronautical research to cover the entire aircraft lifecycle, from
design and production to waste disposal after the system’s end-of-life. Consequently, the
challenge is to incorporate these new requirements into the early design phase, enabling
strategic decision-making processes to optimize the entire aircraft lifecycle [7]. To do
this, collaborative multidisciplinary aircraft design and optimization should be carried
out involving not-only the aircraft design domain (typically accounted during the con-
ceptual aircraft design) but also other industrial domains, such as manufacturing, supply
chain, maintenance or certification [8]. From the different application cases of the project,
some quantities of interest have been identified from the Multidisciplinary Design Analy-
sis (MDA) and optimization problems have been deduced involving from 2 to 5 objective
functions and several nonlinear constraints that are given by non derivative and expensive-
to-evaluate black box functions. Moreover, when evaluating new architecture systems, it is
important to take into account categorical variables such as on-board system architecture
(conventional, hybrid, electric for instance) or property materials (aluminum, titanium),
which do not have a defined order [9]. Different approaches have been investigated to deal

1https://www.agile4.eu/
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with mixed integer variables, multiple objectives and constraints handling requirements.
These optimizations return a set of feasible configurations considered as optimal trade-
offs. this set of solutions is the so-called Pareto front that consists in the set of solutions
that cannot be improved in one objective without worsening another [10].

Surrogate-Based Optimization (SBO) is a powerful technique for optimizing complex
systems requiring a significant amount of computational resources. For multi-objective
optimization problems, it involves building a surrogate model, such as a machine learning
model, to approximate the behavior of multiple objectives simultaneously, allowing for
efficient exploration of the search space and identification of the Pareto front. The surro-
gate models built offline are then used to predict the objective function values at different
points in the search space, enabling the optimization algorithm to focus its computational
resources on the most promising regions of the search space [11].

To avoid this offline cost involving a large number of function evaluations, some adap-
tive strategies have been introduced. Nowadays, Bayesian Optimization (BO) [12] is
well known as a powerful tool in scientific research for optimizing complex, expensive-to-
evaluate functions with unknown properties. It is particularly useful when only a limited
number of evaluations is available which is often the case with scientific experiments.
When multiple objectives are involved, multi-objective techniques must be used to find
the set of optimal solutions that maximize or minimize these multiple objectives simul-
taneously, rather than focusing on a single objective. Multi-objective optimization using
Bayesian algorithms is a potent strategy for optimizing intricate systems that possess
multiple, conflicting objectives. Bayesian optimization techniques allow for efficient ex-
ploration of the search space by harnessing probabilistic models to forecast the behavior
of the objectives being optimized. This facilitates a trade-off between exploration and
exploitation and allows the inclusion of prior knowledge on the objectives.

In summary, multi-objective optimization with Bayesian algorithms is a valuable tool
for scientific research, providing an efficient way to identify the Pareto front and make
informed decisions based on multiple, conflicting objectives. Here some illustrations are
done on three application cases of the AGILE 4.0 project with different characteristics. On
the first application case, about retrofitting concepts (engine, winglet, on-board systems),
the different impacts on aircraft performance are characterized (e.g., Direct Operating
Cost (DOC), emissions) to select the best retrofitting strategy. The second application
is about designing an aircraft family composed of three different aircrafts with differ-
ent commonality choices (wing, engine, empennage). Again, the different solutions are
characterized by different impacts on aircraft performance (e.g. mass, aerodynamic effi-
ciency) and different commonality choices. To finish with, the third application concerns
Horizontal Tail Plane (HTP) production and search for a equilibrium between airplane
performance, manufacturing costs and the efficiency of the supply chain.

The outline of the paper is as follows. In Section 2, the multi-objective optimization
problem is presented and two proposed frameworks are then described. A first SBO
algorithm JPAD Optimizer is introduced in Section 2.2 and a second BO framework
SEGOMOE is given in Section 2.3 where the Continuous Relaxation (CR) as well as the
use of the Partial Least Squares (PLS) technique are detailed. Some details concerning
the remote access to the frameworks are also provided. Then Section 3 presents three
MDO application cases where multiple physics and domains are involved. For each of the
application cases, multidisciplinary analysis, optimization problem as well as the obtained
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results are detailed. Conclusions and perspectives are finally drawn in Section 4.

2 MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS

To begin with, we start formulating the multi-objective paradigm over which the paper
will be based. Then, we introduce our two frameworks used to solve such multi-objective
optimization problems in an industrial context.

2.1 Multi-objective formalism

Consider the multi-objective constrained optimization problem





min
x∈Ω×S×Fl

f(x) := [f1(x), f2(x), · · · , fn(x)]

s.t. g1(x) ≤ 0
...

gm(x) ≤ 0,

(1)

where Ω ⊂ Rd represents the bounded continuous design set for the d continuous variables,
S ⊂ Zℓ represents the bounded integer set where L1, . . . , Lℓ are the numbers of levels
of the ℓ quantitative integer variables on which we can define an order relation, and
Fl := {1, . . . , L1} × {1, . . . , L2} × . . . × {1, . . . , Ll} is the design space for l categorical
qualitative variables with their respective L1, . . . , Ll levels [9]. The objectives functions are
referred as fi : Rd → R ∀i = 1, . . . , n where n is the number objectives. The constraints
are named gj : Rd → R ∀j = 1, . . . ,m where m is the number of constraints (inequality
or equality). Due to potentially conflicting objectives, the solution of the optimization is
not unique but a range of solutions is proposed. The trade-off between these solutions
is characterized by the notion of dominance: a solution x is said to dominate another
solution x′ and denoted by x ⪯ x′ if

fi(x) ≤ fi(x
′) ∀i = 1, . . . , n.

The set of solutions representing the optimal trade-off is referred to the Pareto set (PS)
and the corresponding image of PS in the objective space is known as the Pareto front (PF)

PF := {f(x)|x ∈ PS}.

Figure 1 illustrates a Pareto front (red points) relative to two objectives. An approx-
imation to this PF is given by the scattered green dots and the associated dominated
hypervolume given by the green area. Both the SBO and BO frameworks to solve prob-
lem (1) are described in the following.

2.2 Surrogate-Based Optimization with JPAD

In this work, one of the optimization tools used is the JPAD Optimizer, which is
based on the Multi-Objective Evolutionary Algorithms (MOEA) framework. It should
be noted that the JPAD Optimizer is an independent implementation within the JPAD
library, as described in [13, 14]. The MOEA framework is a Java library that serves as an
open-source platform for the development and experimentation of various optimization
techniques. The latter offers a range of pre-implemented algorithms that can be readily
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Figure 1: Hypervolume Improvement: the hypervolume indicator of the non-dominated
set (green points) corresponds to the area dominated by it, up to R (reference point in
black). The gray rectangle is the hypervolume improvement brought by the new added
point in magenta.

employed, such as genetic algorithms and particle swarm optimization, among others. For
this particular study, the ϵ-NSGAII algorithm has been used. The ϵ-NSGAII algorithm
extends the NSGA-II algorithm by incorporating an ϵ-dominance archive and random-
ized restarts, thereby enhancing the search process and enabling the discovery of a diverse
set of Pareto optimal solutions. A comprehensive explanation of this algorithm can be
found in [15] with in-depth details and comparisons. The JPAD Optimizer requires a
comprehensive factorial database to conduct the analysis effectively. This database en-
ables the solver to construct a specific Response Surface Model (RSM) through spline
interpolation. The RSM serves as a surrogate model, capturing the relationship between
the input variables and the response variable. By utilizing the RSM as a surrogate model,
the optimization algorithm can efficiently explore the design space and identify optimal
solutions. However, it is important to note that direct inclusion of categorical variables
in the optimization is not feasible. To address this limitation, one potential solution is
to perform the optimization iteratively, considering each categorical variable separately
for each run. Still, using the JPAD Optimizer in conjunction with the MOEA framework
provides a robust and versatile approach to the optimization process. The selection of
the ϵ-NSGAII algorithm within the MOEA framework allowed for efficient and effective
exploration of the design space, leading to the identification of a diverse range of Pareto
optimal solutions. The chosen references provide additional information on the JPAD li-
brary, the MOEA framework, and the ϵ-NSGAII algorithm, serving as valuable resources
for readers interested in a more detailed understanding of the employed methodologies.
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2.3 Bayesian Optimization with SEGOMOE

The second proposed optimization process is based on a sequential enrichment ap-
proach, typically the Efficient Global Optimization algorithm [11] or Super EGO [16],
an evolution of EGO to handle constraints. Bayesian Optimization (BO) is based on
Gaussian processes (GP) [17] (also denoted by Kriging [18]) and here the idea is to use
some adaptive mixture of Kriging based models to tackle high dimension problems. The
mixture of experts (MOE) [19, 20] is known to approximate complex functions with het-
erogeneous behaviour by combining local surrogate models in a global one. In order to
consider high-dimensional functions to approximate objective functions and constraints,
we used adapted local Kriging-based models [21, 22]. Some recent developments have
been made to consider highly non linear constraints [23], mixed integer variables [24] and
multi-objective applications [10]. The general framework called Super Efficient Global
Optimization coupled with Mixture Of Experts (SEGOMOE) has been proposed by ON-
ERA and ISAE-SUPAERO. The performance of SEGOMOE is validated and proven on
different analytical and industrial test cases [25–27].

Here we consider multiple objectives and constraints with mixed integer variables.
Some continuous, integer and categorical variables are involved within the different appli-
cation cases, so the GP surrogate models have to be adapted to deal with. We proposed
to combine continuous relaxation to replace categorical variables by continuous ones and
Partial Least Squares techniques to handle the increase of dimensionality. The continuous
relaxation introduced by [28] uses a one-hot encoding strategy [29] and transforms integer
and categorical inputs into continuous ones, so some classic continuous correlation kernels
can still be used to build the Kriging models. The design space Ω× S × Fl is relaxed to
a continuous space Ω′ constructed on the following way [24]:

• ∀i ∈ {1, . . . , ℓ}, the integer variable zi is relaxed within its bounds and treated as
continuous.

• ∀j ∈ {1, . . . , l}, we use a relaxed one-hot encoding [29] for the categorical variable
cj (and its Lj associated levels) and add Lj new continuous dimensions into Ω′.

Therefore, we get, after relaxation, a new design space Ω′ ⊆ Rd′ where d′ = d + ℓ +∑l
j=1 Lj > d + ℓ + l. As the number of variables may increase drastically (from d to d′),

one new added variable associated to each categorical level, PLS technique is combined
with Kriging, denoted as KPLS and KPLS-K models [21, 22], to reduce the number of
hyperparameters. During experiments, the chosen number of principal components within
KPLS models does not exceed 4 or 5. The code implementation of the proposed GP has
been released in the toolbox SMT v1.12 [30].

Once the initial Design of Experiments is given in the relaxed space Ω′, Kriging based
surrogate models are built for the objective and constraint functions. Each costly function
fi(x) is approximated by a GP characterized by its mean ŷi(x) : Rd′ → R and its standard
deviation si(x) : Rd′ → R

f̂i(x) ∼ N (ŷi(x), s2i (x)) i = 1, . . . , n

2https://smt.readthedocs.io/en/latest/

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

457



N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

For the multi-objective, we assume that the n components of f are independant to define
f̂ as the surrogate model associated to each component

f̂(x) ∼ N (ŷ(x),Σ(x))

where ŷ(x) : Rd′ → Rn is the GP prediction vector given by [ŷ1(x), . . . ŷn(x)] and Σ(x)
is a diagonal matrix whose diagonal vector is given by s2i (x),∀i = 1, . . . , n. So the initial
problem defined by Eq.(1) is replaced by an infill problem defined as follows





max
x∈Rd′

α
reg
f (x)

s.t. ĝ1(x) ≤ 0
...

ĝm(x) ≤ 0,

(2)

where ĝi(x) corresponds to the mean prediction of the GP constraint models and the
regularized acquisition function [10] is defined by

α
reg
f (x) := γ αf (x)− ψ(µf (x)) (3)

where αf (x) is a standard scalar acquisition (EHVI, PI, MPI, . . . ) depending on ŷ(x) and
Σ(x), and γ is a constant parameter. The function ψ : Rd′ → R is a scalarization operator.
Different choices exist for the function ψ and in [10] two options were investigated. Namely,
for a given ŷ(x) ∈ Rd′ , we consider

(reg = max) : ψ(ŷ(x)) := max
i≤d′

ŷi(x)

(reg = sum) : ψ(ŷ(x)) :=
d′∑

i=1

ŷi(x)

The performance of this regularized acquisition function (3) has been tested on analytical
examples involving continuous variables and apply with success to an aircraft design test
case in [10].

Concerning the different BO criteria relative to the hypervolume Improvement, an illus-
tration is proposed in Fig.1. The Expected Hyper-Volume Improvement (EHVI [31, 32]),
the Probability of Improvement (PI [33]), and the Minimum of Probability of Improvement
(MPI [34]) are some multi-objective extensions of the well known Expected Improvement
(EI [11]). As seen in Fig.1, with respect to the predictions in the Gaussian random
field, the idea is to measure how much hypervolume improvement (grey area) could be
achieved by evaluating the new point (magenta point), considering the uncertainty of
the prediction. These criteria differ depending how they favor well-spread solutions: for
instance for EHVI the hypervolume increase is small when adding a new value close to an
already observed one in the objective space. To solve problem Eq.(2), any optimization
algorithms capable of considering non linear constraints based either on derivative free op-
timizer such as COBYLA (Constrained Optimization BY Linear Approximation [35]) or
based on gradient method such as SLSQP (Sequential Least Squares Programming [36])
or SNOPT (Sparse Nonlinear OPTimizer [37]) can be used together with a multistart
strategy. This adaptive process is repeated until the total budget is reached. The feasible
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points of the final database represent the known Pareto optimal points. Nevertheless,
as the set of known points has been enriched sequentially to increase the hypervolume,
the final database can be used to build GP models for objectives and constraints as a
post-processing step. These final GP models can be coupled to an evolutionary algorithm
to deal with the multi-objective constrained problem and retrieve the approximated PF.
The well known NSGA-II algorithm (Non-dominated Sorting Genetic Algorithm II [38])
of the pymoo [39] toolbox3 is used for that purpose and ultimately provides the predicted
PF based on GP with almost no additional computational cost.

In the end, the proposed strategy provides two outputs: the PF database and the
predicted PF. Comparing the proximity between the two PF is a good criterion to know if
some additional enrichment points are needed or if the accuracy is sufficient. Algorithm 1
details the SEGOMOE optimization procedure.

Algorithm 1: SEGOMOE for constrained multi-objective and mixed-integer
problems.

Inputs: Initial DoE D0 and set t = 0;
while the stopping criterion is not satisfied do

1. Relax continuously integer and categorical input variables to a real
bounded space Ω′ of dimension d′ = d+ ℓ+

∑l
j=1 Lj. Namely, we

continuously relax the mixed categorical DoE to a continuous DoE Dt using
the relaxation procedure;

2. Build the GP model for each objective function fi(x) and each constraint
gj(x) related to the continuous DoE with PLS to reduce the number of the
hyperparameters and compute an estimation of the search space Ωf ;

3. Build the acquisition function α
reg
f (x);

4. Maximize the acquisition function within the feasible domain Ωf :

xt := arg max
x∈Ωf

α
reg
f (x)

5. Add xt,f(xt) and g1(xt), . . . gm(xt) to the DoE Dt+1. Increment t;

end
Post-process: Use the final database to build GP models (for fi(x) and gj(x))
and apply NSGA-II algorithm to construct the PF ;
Outputs: The PF database and the predicted PF;

2.4 Optimizers access

In AGILE 4.0 project, a Process Integration and Design Optimization (PIDO) com-
ponent, also known as RCE [40], is required to execute disciplinary workflows. This
executable workflow integrates the different disciplinary tools, which are treated as black-
boxes: only inputs and outputs are relevant for the component and the codes are not
exposed. The disciplinary tools are installed locally or in servers. Different types of MDO
problems can be executed in the component, as basic multidisciplinary analysis, DOEs

3https://pymoo.org/
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or full optimizations. Another key aspect of the collaborative workflow derives from the
collaborative design process. Since the different disciplinary tools can be hosted in differ-
ent locations, executable workflows are typically distributed simulation workflows across
multiple networks in multiple companies. In AGILE 4.0, Brics tool [41, 42] is used to
provide the mechanism for interconnecting PIDO environments and hence multi-partner
and distributed collaborative simulation workflows. By providing data encryption ser-
vices, Brics supports protection of the data to be exchanged to and from the central data
server in which the inputs/outputs (I/O) file is transferred between the disciplinary tools.
In the project, I/O file relies on Common Parametric Aircraft Configuration Schema
(CPACS) [43]. CPACS is an open-source, XML-based common language for the exchange
of product data. It allows storage of parametric definitions of aircraft geometries as well
as analysis results of the individual design disciplines. Therefore, any legacy engineering
tool in AGILE 4.0 context is equipped with a wrapper that enables the tool to act on
product data and produce analysis results in CPACS format.

As all the application cases have to address multi-objective optimization problems with
mixed variables, the optimization algorithms currently available through RCE were not
entirely suitable (direct application of genetic algorithms would result in an excessively
large number of evaluations). Only a few partners, such as ONERA, NLR, or UNINA,
were able to provide gradient-free algorithms capable of solving these types of optimization
problems. Therefore three different technical approaches have been applied to connect
optimizers to the workflows:

• Local optimizer: the first approach consisted in using an adequate optimization
algorithm located on the integrator’s site. This means that the integrator of the
workflow needs to have also an expertise in optimization. In AGILE 4.0, only
UNINA could apply this approach with JPAD algorithm as illustrated in Section 3.1.

• Remote optimizer through Brics call: the second approach consisted in considering
an MDA workflow as a whole that can be called remotely like any design competence
from an RCE specific workflow located in the optimizer owner’s premises. This
approach was successfully applied in multiple application cases and was retained for
the application case presented in Section 3.3.

• Remote access through WhatsOpt: the third approach applied the optimization
process not on the design workflow but directly on the architectural choices that is
connected to the RCE workflow. In that case, the optimizer is made accessible “as a
service” through WhatsOpt [44], a web application supporting MDO collaborative
activities. This approach was successfully demonstrated in the application case
illustrated in Section 3.2.

3 APPLICATIONS

3.1 Airframe upgrade design

This first application case is part of the Upgrade driven stream and aims at accounting
retrofitting options in the aircraft MDO workflow. The AGILE 4.0 MDO framework is
used to design various retrofitting concepts, including engine replacement, OBS electrifica-
tion, and winglet installation. Each solution has different impacts on aircraft performance,
such as fuel consumption, direct operating cost (DOC), air and noise emissions, as well
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as different retrofitting costs. The objective is to be able to select the optimal retrofitting
strategy by trading DOC and emissions against retrofitting costs.
For this specific application case, a classical Multidisciplinary Feasible (MDF) approach is
being utilized. This type of architecture involves an optimizer driving an MDA workflow,
where a complete design is executed in each iteration. The MDA components comprising
the workflow can be observed in Figure 2. The workflow begins with an engine module,
which provides key engine characteristics based on the given engine ByPass Ratio (BPR)
input. This module relies on GASTurb 4 computation. The aerodynamics branch calcu-
lates values for both low-speed and high-speed conditions. To account for high-fidelity
results in high-speed conditions obtained through CFD analysis, a RSM has been devel-
oped. The tool also considers engine geometry and position as inputs. The OBS discipline,
named ASTRID [45], is responsible for sizing the overall on-board system (OBS). It de-
termines the masses and the hydraulic, pneumatic, and electric power required by each
system during different phases of the mission profile. It also calculates the power-off-takes
(secondary power computation) to consider their impact on engine fuel flow. In this study,
four different OBS architecture electrification levels are considered, ranging from CONV
(conventional) to AEA (all electric aircraft) with two intermediate architectures, namely
MEA1 and MAE2 (more electric aircraft 1 and 2). A more detailed description of these
architectures can be found in [46]. The performance tool uses a simulation-based ap-
proach to compute ground and in-flight performance. It calculates overall mission profile,
performance, fuel consumption, flight time, and gaseous emissions. The structural com-
petence relies on a surrogate model based on a high-fidelity structural analysis DOE. This
tool optimizes the wing mass by adjusting lamination parameters and thicknesses while
ensuring aeroelastic stability, angle-of-attack, strength, and buckling constraints are met.
The last three tools described are executed in a converger loop, with iterations performed
until convergence is achieved on the maximum take-off weight. The noise competence
calculates noise emissions at the certification points in accordance with FAR36 and ICAO
Annex 16 regulations. It also provides the noise margin with respect to the certification
limits. The cost competence evaluates both recurring and non-recurring costs, including
aircraft price and direct operating costs. It also estimates the development, operation,
and equipment costs associated with a retrofitting activity. Additionally, it computes cost
savings (a component of direct operating costs) resulting from reductions in fuel consump-
tion, maintenance costs, and emission taxes. The cost methodology is explained in [47].
Further details about the MDA workflow presented here can be found in [48].

This application case includes the integration of costly evaluations required to com-
pute the wing structural weight and the high-fidelity aerodynamic effect of the relative
nacelle/wing location. To mitigate the cost and computational time, for each design com-
petence, a RSM was built in an off-line process with SMT [49]. A database computed
by PROTEUS [50], a tool developed by TUD, is used to calculate the wing’s structural
mass. The RSM utilizes a database of 56 points (to achieve more than 10 points per di-
mension) obtained through a Latin Hypercube Sampling (LHS) approach. Additionally,
an RSM has been developed based on CFD analysis provided by CFSE to consider the
aerodynamic effects of both the pylon and the installed engine on the drag coefficient.
The RSM for this purpose utilizes a database of 90 points obtained through an LHS ap-
proach. For this RSM, the initial database was smaller (around 10 points per dimension)

4https://www.gasturb.de/ GasTurb

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

461



N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

0, 13:

COOR
1: 4 inputs 2: 1 input 3: 2742 inputs 4: 1 input 5: 9 inputs 6: 830 inputs 7: 2674 inputs 8: 4 inputs 10: 1364 inputs 11: 39 inputs

13: 3 outputs
1, 12→ 2:

DOE
2: 1 connection 4: 2 connections 6: 2 connections 7: 3 connections 11: 1 connection

2:

ENGINE
3: 2 connections 6: 1 connection 11: 13 connections

3:

AERODYNAMICS
4: 1 connection 6: 7 connections 10: 148 connections

4:

AERO RSM
6: 1 connection

5, 9→ 6:

CONV
6: 7 connections 7: 2 connections

12: 1 connections
6:

PERFORMANCE
7: 19 connections 8: 4 connections 8: 2 connections 10: 39 connections 11: 1 connection

9: 4 connections
7:

OBS
8: 4 connections 8: 1 connection 11: 8 connections

9: 2 connection
8:

SFC SENSITIVITY

9: 3 connection
8:

Structural RSM
11: 1 connection

10:

NOISE
11: 3 connections

12: 2 connection
11:

COSTS

Figure 2: XDSM DOE MDA for Airframe upgrade design.

but had to be enriched to increase the accuracy of drag prediction. These RSMs have
been incorporated as design competences within this workflow.
Regarding the choice of optimization solver, two different approaches were tested during
the frame of the project. The first optimization strategy relies on the JPAD optimizer
provided by UNINA and described in Section 2.2. In this approach, a DOE (full fac-
torial composed of 108 points) is built using the workflow illustrated in Figure 2. In a
second step, using JPAD Optimizer, four different optimizations are performed, each cor-
responding to one of the categorical variables (OBS choice) considered in the optimization
problem. For each of this optimization and each quantity of interest, a specific RSM using
spline interpolation is built based on the obtained database using the JPAD optimizer.
Subsequently, the optimization algorithm is applied, using the RSM. The generation of
the DOE dataset occurs online, while the offline optimization process takes place once
all the data are available for processing. The second optimization approach takes advan-
tage of SEGOMOE, from ONERA (see Section 2.3) that can handle directly categorical
variables. With this multi-objective BO solver, a remote call to the MDA workflow from
the ONERA location was necessary at each evaluation as explained in Section 2.4. The
optimization workflow executed using SEGOMOE is illustrated in Figure 3 starting with
an initial DOE of 13 points (selected among the 108 full factorial points) and running 68
iterations.

The optimization problem addressed by both of the methodologies presented is defined
in Table 1. Four main objective functions have been established. The first objective is
the maximum take-off weight (MTOW) of the aircraft, which is computed through the
iterative convergence process described earlier. The second objective is the cumulative
emission index (CEI), which quantifies the level of emissions in terms of air and noise. This
index is calculated as a weighted sum of three emissions, expressed in non-dimensional
units. The third objective is the difference between costs and savings. This objective
captures the disparity between two economic factors. The first factor encompasses the
capital costs incurred by the manufacturer to retrofit the aircraft, including the expenses
associated with development, operations, and equipment required for the retrofitting ac-
tivity. The second factor concerns the operational savings, which include the reductions
in fuel consumption, maintenance costs, and emission taxes achieved compared to the
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Figure 3: XDSM optimization for airframe upgrade design.

baseline aircraft during a typical mission. The fourth objective is the maximum specific
air range (SAR) achievable in cruise conditions and weight, representing the aircraft’s
flight efficiency and fuel consumption. Four design variables are considered. One variable
is categorical, representing four different OBS architectures that range from conventional
to all-electric configurations. The other three variables are continuous, including the en-
gine BPR and the engine X and Z locations with respect to the wing attachment points.
Figure 4 represents the system under analysis, illustrating the components that can be
retrofitted and are affected by the design variables considered in the problem. Lastly,
four constraints have been selected. The retrofit solution must maintain at least the same
maximum take-off weight and the same take-off and landing distances as the baseline
configuration. Additionally, a reduction of 6 dB in cumulative noise emissions must be
achieved compared to the original aircraft, leading to a maximum cumulative noise equal
to 263 dB.

(a) Engines and OBS are highlighted.

5 

 

nacelle location. In the targeted range of CL, around 0.45, the predicted values are in line with the computations. The 

remaining tool capabilities are based on semiempirical approaches. High-fidelity results have been validated through 

[6]. 

 

Figure 3: RANS CFD analyses, Cruise condition  

 

Figure 4: RSM validation – BPR 12 

3. On-board-system and SFC sensitivity.  

The OBS discipline named ASTRID [7] sizes the overall on-board-system. It is based on semiempirical and physics-

based models. Starting from the typical loads for the OBS such us hinge moments, hot/cold air required, avionics 

functions, and others, the single user subsystem has been designed. Then, considering the loads coming from the user 

subsystems and any possible synergies, the power supply systems (i.e. hydraulic, pneumatic and electric power and 

distribution systems) have been defined. The design process is showed in Figure 5.   

 

Figure 5: ASTRID OBS design process [7] 

 

(b) CFD simulation of nacelle location effects.

Figure 4: Reference regional jet aircraft.

The following are the results of the optimization process explained earlier. Figure 5
displays the DOE points and the PF obtained using both approaches. The workflow
depicted in Figure 2 generated a total of 108 points in the DOE, represented by orange
dots in Figure 5. On the same figure are highlighted, as red crosses, the points satisfying
the optimization constraints for both DOE (45 feasible points out of 108 full factorial
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Table 1: Definition of the airframe upgrade design problem.

Function/variable Nature Quantity Range

Minimize Maximum Take-Off Weight cont 1
Minimize Cumulative Emission Index cont 1
Minimize Cost - savings cont 1
Maximize Max Cruise Specific Air Range cont 1

Total objectives 4

with respect to OBS architecture cat 4 levels [CONV, MEA1, MEA2, AEA]
Total categorical variables 1

Engine Bypass Ratio cont 1 [9, 15] (−)
Engine X cont 1 [−0.98,−0.80] (m)
Engine Z cont 1 [−0.39,−0.21] (m)

Total continuous variables 3
Total relaxed variables 7

subject to Maximum Take-Off Weight ≤ 39058.5 kg 1
Take-Off Field Length ≤ 1500 m 1
Landing Field Length ≤ 1400 m 1
Cumulative Noise ≤ 263 dB 1

Total constraints 4

DOE points) and JPAD optimization.
Regarding the results obtained with SEGOMOE (the workflow shown in Figure 3),

green crosses represent all the evaluated points fulfilling the optimization constraints
(among the 81 points computed with this approach). The global PF, indicated by the
15 blue circles, was derived from combining both databases obtained by JPAD optimizer
and SEGOMOE. This front is composed by 4 points from JPAD optimizer and 11 points
from SEGOMOE optimizer. Among the points on the PF, the best solution depends on
the designer’s preferences. For instance, the point with the minimum difference between
costs and savings (the lower one) is always an optimum choice in terms of economic profit.
However, it may not be the optimal solution concerning other variables such as CEI and
SAR. In fact, several solutions that offer significant benefits in terms of emissions, SAR,
and MTOW may be disregarded in the pursuit of achieving lower costs. Similarly, there
are points that offer maximum benefits in terms of other variables but may not be desir-
able due to their higher costs. When examining opposite solutions on the PF, the selection
of engine BPR and OBS architecture can vary depending on the performance objective to
be maximized: for example, a BPR of 9.0 with a conventional OBS architecture (CONV)
or a BPR of 15.0 with an advanced electric aircraft (AEA) OBS architecture. Opting for
lower BPR and a moderate level of electrification (representing state-of-the-art technolo-
gies) helps reduce retrofitting costs while achieving moderate performance improvements.
Conversely, increasing the level of retrofitting by adopting advanced engine technology
and full OBS electrification (beyond state-of-the-art) can significantly enhance overall
performance metrics like SAR and CEI, but at the cost of higher retrofitting expenses.
For instance, considering a higher BPR and advanced electrification, emissions are re-
duced (CEI decreases from 1 to 0.86), MTOW slightly decreases (around -3.1% compared
to the baseline), and SAR increases (around +25% compared to the baseline). As a result,
the costs minus savings increase to 0.44 million euros per year, indicating a loss for an
airline operating the aircraft under the considered scenarios.

In this application, two approaches were compared, both providing solutions located
on the PF. For this case, SBO with JPAD appears to be a bit more costly - in terms of
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number of function evaluations - than BO with SEGOMOE and ends up with a smaller
number of feasible solutions. Nevertheless, this approach is less sensitive to a change in
optimization problem (in terms of objectives and constraints) as it relies on an initial
database whereas SEGOMOE enrichment process is tailored for a unique optimization.

(a) Cost - Savings vs MTOW (b) Cost - Savings vs SAR

(c) Cost - Savings vs CEI

Figure 5: Different PF using four objectives: 108 DOE points for JPAD (orange dot), 15
points (blue circle) on the final PF combining JPAD (red cross) and SEGOMOE (green
cross) databases.

3.2 Design of an aircraft family

This application case is part of the upgrade-driven stream and aims at designing a fam-
ily of three business jet aircraft considering commonality options in the MDO workflow [5].
The commonality options enable sharing one or more aircraft components between the
aircraft in the family: by sharing components, design, certification, production, and main-
tenance costs are reduced. However, operating costs might be increased due to the use of
components not designed for the typical flight conditions.

Shareable components include wings, empennage (horizontal and vertical tail), engines,
on-board systems (OBS), and landing gears, shown in Figure 6. Next to the commonality
choices there are three design variables per wing: leading edge sweep, rear span loca-
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tion (determining flap size), and thickness-to-chord ratio. These three design variables
per wing are inactive if the associated wing is a shared wing. Each aircraft family is
optimized for two objectives: direct operating costs (DOC), representing the impact on
performance, and Original Equipment Manufacturer (OEM) non-recurring costs, repre-
senting the potential benefit of commonality. Table 2 presents the optimization problem
in more details.

Share engine 2&3?
Share engine 1&2?

Share wing 1&2? Share wing 2&3?

Share landing gear & systems?

Share empennage?

Figure 6: Visualization of the aircraft family including commonality sharing decisions.

The design space is modeled using the Architecture Design Space Graph (ADSG)
method [51] implemented in the ADORE tool [52], both developed during the project.
MultiLinQ is used to couple the generate architecture instances to the central data schema
used in the MDO workflow [5]. The MDO workflow consists of two levels: an aircraft-
level workflow (shown in Figure 7) applying commonality decisions and sizing one aircraft
at a time, and a family-level workflow converging the three aircraft-level workflows and
performing cost calculation on the family-level. For a more detailed overview of the design
space model, coupling to the MDO workflow and implementation of the MDO workflow
for the family design application case, the reader is referred to [3, 5].

For this application case SEGOMOE is used as optimization algorithm due to the
need to handle hierarchical, mixed-discrete design variables, and the need to minimize
the number of function evaluations as one family evaluation can take up to 2 hours. Hi-
erarchical design variables were handled using the imputation method, where inactive
variables are replaced by the mean value to prevent duplicate design vectors [27]. SEGO-
MOE was accessed through an ask-tell API implemented in WhatsOpt running on a server
at ONERA’s premises as described in Section 2.4. For a more detailed description of how
SEGOMOE was coupled to ADORE and the MDO workflow, the reader is referred to [3].

First, a 50-point DOE was executed to create the initial database of design points for
SEGOMOE and to verify the correct behavior of the MDO workflow. Then, SEGOMOE
was used to generate an addition of 18 infill points to explore the design space and
extend the Pareto front. Figure 8 shows the main Pareto front, with infill points shown
in red. Several example families are shown with colors indicating the originating family
member (colors are defined in Figure 6). As can be seen, when no components are shared
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Table 2: Definition of the aircraft family design problem.

Function/variable Nature Quantity Range

Minimize Direct Operating Costs cont 1
Minimize OEM Non-Recurring Costs cont 1

Total objectives: 2

with respect to engine commonality 1&2 cat 2 levels sharing yes/no
engine commonality 2&3 cat 2 levels sharing yes/no
wing commonality 1&2 cat 2 levels sharing yes/no
wing commonality 2&3 cat 2 levels sharing yes/no

landing gear commonality 1&2 cat 2 levels sharing yes/no
landing gear commonality 2&3 cat 2 levels sharing yes/no

OBS commonality 1&2 cat 2 levels sharing yes/no
OBS commonality 2&3 cat 2 levels sharing yes/no

empennage commonality 1&3 cat 2 levels sharing yes/no
empennage commonality 3&2 cat 2 levels sharing yes/no

Total categorical variables: 10
Leading edge sweep* cont 3 [30.0, 42.0] (deg)
Rear span location* cont 3 [0.72, 0.82] (%chord)

Wing thickness/cord ratio* cont 3 [0.06, 0.11] (−)
* only active if the corresponding wing is not shared

Total continuous variables: 9
Total relaxed variables: 29

subject to Balanced Field Length ≤ 1524 m 1
Landing Field Length ≤ 762 m 1

Total constraints: 2

Figure 7: MDA for family aircraft design.

(family #1) the OEM non-recurring costs are high whereas the operating costs are low,
because all aircraft components are used at the operating points they are designed for.
Introducing more component sharing reduces OEM NRC: family #62 achieves the lowest
operating costs at a reduced NRC. Family #54 represents the opposite extreme: the lowest
NRC coupled with the highest operating costs, as achieved by a high number of shared

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

467



N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

components. Family #30 represents a good compromise, at a reduced NRC compared to
family #62, with only a moderate increase in DOC.

Family #54: lowest NRC, highest DOC (in Pareto front)

Family #62: highest NRC, lowest DOC (in Pareto front)

Family #30: low NRC, low DOC (good compromise)

Family #1: high NRC, low DOC (no commonality)

Figure 8: Results of the aircraft family design, showing the Pareto front for minimization
of Original Equipment Manufacturer Non-Recurring Cost and Direct Operating Cost and
several families. The initial DOE is given by the 50 black dots. Infill points generated by
SEGOMOE are shown in red. Colors correspond to the originating aircraft as defined in
Figure 6.

3.3 Aircraft design with supply chain, performance and manufacturing pro-
cess

This application case is part of the Production stream and aims at accounting the sup-
ply chain aspects in the aircraft MDO workflow, in addition with design and manufactur-
ing aspects. The application focuses on the design of a horizontal tail plane (HTP) made
by different materials and produced by different supply chains, combination of enterprises.
The different solutions are characterized by different impact on aircraft performance (e.g.
mass, aerodynamic efficiency), different manufacturing processes and different combina-
tions of supply chains.

The objective is to have the ability to select the best HTP to produce by trading
performance vs manufacturing costs vs supply chain performance. In this study, HTP
structure breakdown includes skin, stringers, spars and ribs that impact the three domains:

• the manufacturing domain deals with the choices of materials, manufacturing and
assembly processes feasible for the aircraft components. For each combination of
materials, a Technology Factor (TF), a dimensionless number ranging from 0 to 1,
is produced.

• the design domain deals with the estimation of the aircraft performance. The Tech-
nology Factor is considered in the evaluation as it quantifies the impact that mate-
rials, manufacturing and assembly processes, have on the mass and drag of the HTP
and, consequently, on the fuel consumption of the vehicle in cruise. The estimation
of the fuel consumption is the main output of the design domain.
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• the supply chain domain estimates the production performance by characterizing the
enterprises involved in the aircraft production and assembly. Here, each component
of the HTP is characterized by a Production Quantity (PQ) that indicates the
percentage of this component that each enterprise has to produce. The cost, time,
quality and risk are the main outputs of this domain.

For more details regarding this study, the reader can refer to [6, 8, 53]. Figure 9 proposes
a sketch of the interaction between the three domains to build the MDA.

Figure 9: MDA including Manufacturing, Supply Chain and Aircraft Design Variables.

In a first step, the focus was on the supply chain aspect in order to define the for-
malization, the settings of the optimizer, and the settings for remote calls. During this
step, the initial problems are used to calculate the full enumeration of solutions in order
to compare the performance of the optimizer with the true Pareto Front of the database.
Several increasingly complex problems were tackled, starting with a reduced number of
components (for instance only skins and stringers), limited PQ numbers, and limited pro-
duction sites. Eventually an optimization problem considering all the HTP components
and all possible supply chain sites was successfully tackled.

In a second step, the activities focus on integrating the manufacturing options in the
overall optimization problem. It requires to add more variables, namely the choice of
materials and their associated manufacturing processes for each HTP component. In
addition, two constraints have now to be considered:

• the material incompatibility, that aims at discarding all the unfeasible combinations
of material and manufacturing processes for the HTP components (for instance,
an HTP can not be made using both skin in Aluminium - Machining and ribs in
Thermoset - Hand Lay Up);

• the minimal supply chain site competence that checks that no combination of skin,
spar, stringer and ribs (depending of their material and manufacturing process) can
be produced on a site with a competence of 0.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

469



N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

Table 3 presents the optimization problem in more details. Five objectives are considered,
Cost, Risk, Time and Quality that are related to the supply chain domain and Fuel
Consumption that is connected to the overall aircraft design and manufacturing domain.
The variables represent all the possible choices of the HTP components characteristics and
are treated as categorical variables in the optimization problem. Two types of variables
are considered for each HTP component:

• the choice of production and assembly site. Here the PQ have been frozen to 1, but
all the possible production sites are available. Each component can therefore be pro-
duced among 21 different sites, either belonging to the OEM (Original Equipment
Manufacturer) or to a supplier or sub-suppliers.

• the choice of materials and their associated manufacturing processes. Depending of
the component, several combinations of material and manufacturing process can be
selected (up to 6 for skin). For instance, choices could be Aluminium - Machining,
Thermoset - Hand Lay Up or Thermoset - Infusion Process.

Finally, the two constraints described earlier are included.

Table 3: Definition of the complete problem.

Function/variable Nature Quantity Range

Minimize Cost cont 1
Minimize Risk cont 1
Minimize Time cont 1
Minimize Fuel Burn cont 1
Maximize Quality cont 1

Total objectives 5

with respect to skin prod. location cat 21 levels geographic sites
spar production location cat 21 levels geographic sites

stringer production location cat 21 levels geographic sites
rib production location cat 21 levels geographic sites

skin Material & Manuf. process cat 6 levels Alu-Machining,...
spar Material & Manuf. process cat 5 levels Alu-Machining,...

stringer Material & Manuf. process cat 4 levels Alu-Machining,...
rib Material & Manuf. process cat 5 levels Alu-Machining,...

Total categorical variables 8
Total relaxed variables 104

subject to Material incompatibility 1
Supply chain sites 1

Total constraints 2

Regarding optimization process, a 300-point DOE was executed to create the initial
database of design points for SEGOMOE and to verify the correct behavior of the MDO
workflow. Then, SEGOMOE was used to generate 450 additional infill points to explore
the design space and extend the Pareto front. The main results of the optimization
process are depicted in Figure 10 and Figure 11. Figure 10 presents the PF database
obtained at the end of the optimization run with 450 iterations. The initial DOE points
are represented by orange dots and can provide information concerning the workflow
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(a) Fuel Burn vs Cost (b) Risk vs Cost

(c) Time vs Cost (d) - Quality vs Cost

Figure 10: Database for five objectives: initial DOE of 300 points (orange dots), 450
enrichment points (red crosses) and, from the complete database (750 points) 65 feasible
points on the PF are identified by the blue circles.

behavior. The enrichment process of SEGOMOE added the 450 red crosses points that
extended the database in direction of the Pareto Front (as it can be seen, for instance, on
the -Quality vs Cost Figure 10d). As the optimization is considering two constraints, not
all the database points are feasible and, at the end of the process, 65 points are identified
on the PF (all highlighted with blue circles).

As indicated in Algorithm 1, a post-processing step is then performed applying NSGA-
II algorithm to construct the predicted PF (using the GP models built upon the database).
Figure 11 illustrates the results of this step with the PF database still depicted by blue
circles. The predicted PF is represented by green diamonds, consisting of 33 candidates.
It can be observed that both databases appear intermingled, indicating that the PF
database already exhibits promising performance. Nevertheless, as an additional step,
all the points belonging to the predicted PF have been evaluated with the workflow and
the outputs are depicted in black diamonds. Two pieces of information can be derived
from this evaluated PF. Firstly, the evaluated candidates closely align with the predicted
values (with the exception of a few), indicating the accuracy of the GP models, despite
being built upon 750 points. Secondly, the PF database appears to maintain its good
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(a) Fuel Burn vs Cost (b) Risk vs Cost

(c) Time vs Cost (d) - Quality vs Cost

Figure 11: Comparison of PF (predicted and evaluated) with five objectives: 65 points
from the PF database (blue circles), 33 points from the predicted PF (green diamonds) or
evaluated with the workflow (black diamonds). The predicted and evaluated points are
quite close to each other and complementary to the PF database.

performance, characterized by its proximity to the evaluated PF. To verify this, both
the PF database and evaluated PF were sorted, revealing that 52 points (out of 65)
from the PF database and 26 points (out of 33) from the evaluated PF contribute to
the final combined PF. As expected, the post-processing step of SEGOMOE successfully
populates the PF identified by the algorithm, thereby enriching the available choices for
the application stakeholders.

4 CONCLUSIONS AND PERSPECTIVES

Within the frame of AGILE 4.0 project, multi-objective problems involving mixed
integer variables have been successfully solved using SBO and BO optimizers based on two
associated frameworks JPAD Optimizer and SEGOMOE. In terms of function evaluations,
the number of calls to the expensive black boxes (objectives and constraints) is still small
compared to the number of design variables involved. SEGOMOE has been successfully
applied to three realistic problems involving 2 to 5 objective functions with mixed integer
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variables. The use of continuous relaxation strategy to handle the categorical variables
has been coupled with PLS to reduce the increase of dimension allowing to consider up
to 104 choices.

To apply BO to even more complex multidisciplinary processes, several developments
need to be addressed. Future work will focus on extending the handling of hierarchical
and mixed discrete variables while improving computational efficiency for larger databases.
Specifically, with regards to mixed integer variables, the intention is to integrate recent
advancements done within the SMT toolbox concerning mixed correlation kernels [9] or
hierarchical kernels [49] for Gaussian processes into BO and validate their effectiveness.
These studies will be conducted within the context of the Horizon Europe COLOSSUS
project 5. The COLOSSUS project aims to develop a system-of-systems design method-
ology that facilitates the integrated optimization of aircraft, operations, and business
models. This methodology will be applied to intermodal transport and wildfire-fighting
scenarios.
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Abstract. Multidisciplinary Design Analysis and Optimization (MDAO) is a key method-
ology used by engineers and researchers to explore and optimize engineering systems com-
posed of multiple disciplines and couplings. The techniques of this field are particularly
relevant for designing complex systems such as aeronautical systems. Today MDAO is
adopted worldwide and several open-source tools are available. Although the underlying
features are standard, these tools differ for some typical features, such as numerical meth-
ods, visualization tools or available integrated/external optimizers. Choosing among these
tools for a given engineering application is not straightforward. This article focuses on
three frameworks that arise from different environments and respond to different needs:
OpenMDAO, GEMSEO, CoSApp. A study case is first proposed as a reference prob-
lem and then analyzed. The three MDAO architectures implemented (MDF, IDF and
NVH) show a similar range of performance. Thus the need to test the frameworks on a
more complex problem to obtain more discriminating results and specific features is high-
lighted. After a brief presentation of the three frameworks, several quantitative criteria are
computed, such as the lines of code required to define the multidisciplinary optimization
problem on the three platforms and the performance of the solving process. In addition,
qualitative criteria concerning the reconfiguration of the MDO process and the problem
visualization are assessed.

Keywords: MDAO, design optimization, system analysis, aeronautical systems
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1 INTRODUCTION

Nowadays, the growing interest in environmental sustainability pushes academic and in-
dustrial entities to search for disruptive technologies that could reduce the carbon foot-
print of the aviation sector. The electrification of aircraft propulsion systems is one
solution investigated. However, the performance of a fully electric aircraft requires a
highly integrated design to take advantage of the additional degrees of freedom that offer
electrification. Multidisciplinary design analysis and optimization (MDAO) can provide
engineers with valuable tools. One essential step in MDAO approach is the formulation
of the optimization problem, which requires the designer to write down his intent in a
mathematical form by considering the design variables, the objective function and the
constraints. In the field of MDAO a large set of architectures exist. Martins recognizes
13 different architectures [1]. The choice of architecture depends strongly on the problem
and the models of each discipline, so choosing one of them is not straightforward for an
engineer. In the present study, the two well-known architectures MDF and IDF and the
new architecture NVH found in the literature are retained and adopted in [2].

The study case used for the test is extracted from [2]. It consists of a design optimiza-
tion problem targeting the minimization of the motor mass of a high dynamic electro-
mechanical actuator. The problem is an interesting option for apprehending and testing
several MDO architectures as it consists of a low number of function analyses with a
strong coupling with equations.

1.1 State of the art

Different proprietary and open-source platforms are available and the goal of this paper
is to test 3 open-source MDAO frameworks on an algebraic problem by evaluating several
criteria that describe the main features and performances of a MDAO tool. Various com-
mercial frameworks have been developed by the leading modeling and simulation platforms
such as Phoenix Integration’s ModelCenter [3], Esteco’s modeFRONTIER [4], Noesis So-
lutions’ Optimus [5], Siemens’ Heeds [6], Altair’s HyperStudy [7], Ansys’ optiSLang[8],
Dassault Systems Isight [9]. Also, more recent companies have also developed solutions
based on their expertise in optimization such as Pseven [10] and VisualDoc [11].

Unlike the proprietary market, open-source frameworks are not as abundant. Beyond the
3 frameworks presented in this paper, RCE is another software known in the MDAO scene.
Developed under the leadership of DLR, it is written in JAVA and adopts a component-
based approach [12]. One of its main features lies in the GUI. The 3 software used in this
work, all coded in Python, are introduced here below:

• OpenMDAO [13]: published in 2015, it has been developed to meet the need for a
new MDO framework to address aircraft design challenges at NASA. Its develop-
ment highlights the strong impact of the derivatives computation method on the
performances of the resolution process and focuses on the monolithic MDO archi-
tectures for the best possible computational efficiency;

• GEMSEO [14]: published in 2021, GEMSEO derives directly from GEMS software
developed as part of the IRT Saint Exupéry MDA-MDO project putting forward
the automatic programming of MDO processes, the integration of state-of-the-art
algorithms for optimization, design of experiments (DOE), surrogate models and
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coupled analyses. GEMSEO fosters the deployment of distributed and multi-level
MDO architectures in parallel to monolithic architectures;

• CoSApp [15]: published in 2018, the tool’s code is the property of Safran SA and
comes from various open-source projects. The framework is designed to be used
in industry and help technical departments in system integration to meet product
specifications.

2 PRESENTATION OF THE STUDY CASE

The study case is based on an electro-mechanical actuator problem proposed in [2]. The
advantage is that it is relatively simple to implement but includes numerical difficulties,
making its resolution challenging. The following equations and inequalities represent the
problem:

Tem = Jmot · Amax
Nred

p
+ Fema

p

Nred

(1)

Jmot = Jmotref ·
(

Tem
Temref

) 5
3.5

(2)

Ωmot = Ωmotref ·
(

Tem
Temref

)− 1
3.5

(3)

Ωmot ≥ Vmax ·
Nred

p
(4)

Mmot = Mmotref ·
(

Tem
Temref

) 3
3.5

(5)

Where Tem is the motor electromagnetic torque, Jmot is the motor inertia, Amax is the
maximum actuator acceleration, Nred is the reducer gear ratio, p is the screw pitch, Vmax

and Fema are the maximum velocity and external load of the actuator, Ωmot the maximum
mechanical speed of the motor and Mmot its mass. The motor sizing scaling laws are
based on a reference motor where Tmotref , Jmotref , Ωmotref , Mmotref are respectively its
electromagnetic torque, inertia, maximal mechanical rotational speed and mass. Motor
torque Equation (1), motor inertia Equation (2) are two coupled disciplines of the sizing
problem whereas motor speed Equation (3), motor speed constraint Equation (4) and
motor mass objective Equation (5) are ordinary analysis functions. The motor torque (1)
and motor inertia Equation (2) are coupled through motor electromagnetic torque Tem
and motor inertia Jmot. The ball screw efficiency is supposed equal to 1 and independent
of the pitch and the axial load.

The design problem consists of minimizing the motor mass Mmot, with respect to reducer
gear ratio Nred, subject to motor speed constraint Equation (4).
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The optimization problem formulation is the following:

minimize Mmot

with respect to Nred

subject to Vmax ·
Nred

p
− Ωmot ≤ 0

(6)

Its XDSM diagram is shown in Fig.1.

N
(0)
red

Optimizer Nred Nred

Motor torque Tem Tem Tem

Jmot Motor inertia

Motor speed Ωmot

g Motor speed
constraint

f : Mmot
Motor mass
objective

Figure 1: XDSM diagram for the study case [2]

An evaluation of each framework’s performance in resolving this problem is assessed. This
evaluation is valid in a specific domain of assumptions. In this work, the main assumptions
are here resumed:

• The MDF architecture requires using a numerical solver to resolve the coupled
equations of motor torque and motor inertia. In this study, the type of solver
is linked to the choice of the optimizer, shown in purple in Fig.1. In the case
of gradient-based optimization (Tab.1), a Newton-based solver is used, while for
gradient-free optimization a non-linear adapted Gauss-Seidel method is used; In the
CoSApp framework, a Newton’s method is used for both cases. The tolerance of
the solver is fixed to 10−10 meaning that:

residual ≤ 10−10

The choice of the tolerance and of the MDA solver can have a significant impact on
the performance;

• In the case of IDF (Individual Design Feasible), the default tolerances of GEMSEO
on equalities and inequalities have been modified to find the exact optimum. For
the sake of equity in comparison, these tolerances have been applied to the other
platforms and are set to 10−10;
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• The termination tolerance on the optimization algorithm is set to 10−8 and the
maximum iteration number is equal to 500;

• The packages’ versions used are 3.25.0 for OpenMDAO, 0.13.0 for CoSApp and 5.0.0
for GEMSEO.

3 PROPOSITION OF COMPARISON CRITERIA

The study case has been solved in different configurations for each platform by changing
the MDAO architecture and the optimization algorithm, as shown in Tab.1. In the case
of OpenMDAO and GEMSEO, another test case is analyzed by considering that partial
derivatives can be computed analytically or by finite difference approximation.

Table 1: List of architectures and optimizers for the combinations investigated

Architecture
Optimization
Algorithm

MDF (Multidisciplinary
Feasible)

SLSQP
(Gradient-based)

IDF (Individual Design
Feasible)

COBYLA
(Gradient-free)

NVH (Normalized Variable
Hybrid)

One of the main goals of this work is to investigate meaningful criteria that allow different
MDAO frameworks to be tested and compared. A significant distinction can be made be-
tween quantitative and qualitative criteria where the former designates some computable
parameters and the latter subjective factors that could affect the user experience. The
quantitative criteria selected are the following:

• The total number of function evaluations that is the result of a counter increased
each time a discipline is executed. As stated in literature [2, 13], this metric can
indicate the computational cost of each architecture;

• The number of total derivative evaluations presented only for the analytical gradient-
based optimization;

• The execution time of the optimization process is retrievable in OpenMDAO and
GEMSEO respectively through the results saved in the driver and in the configura-
tion logger printed by the program. In CoSApp the execution time is obtained by
measuring the clock time between the start and the end of the execution command;

• The absolute error that measures the proximity to the exact optimum;

• The list of available optimization algorithms and numerical solvers;

• The number of lines of code needed to define a discipline and the optimization
problem.

The qualitative criteria selected are the following:

• Support in the generation of a MDAO process based on established architectures;
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• The availability of tools to view and analyze the optimization problem (e.g. diagram
XDSM [16] and matrix N2).

3.1 Disciplines and problem architecture

One of the strengths of GEMSEO consists in the support in the definition of an architec-
ture. The user can choose from a list of well-known MDAO architectures and GEMSEO
will instantiate the corresponding problem. As can be seen in Tab.2, the definition of a
discipline does not require the same number of lines of code in all frameworks. In each
tool, a discipline is defined by two Python class methods, one to set it up and the other to
compute the results (code in Annexes). In CoSApp, once the input variables are declared
in the setup part, the computation function can call them directly. In OpenMDAO and
GEMSEO, this is not the case because the inputs are declared but must be applied to
other variables in the compute function. OpenMDAO differs from GEMSEO in requiring
each variable to be passed in a single line of code. Therefore, CoSApp requires the least
lines of code for implementing a discipline.
Regarding optimization problem definition, GEMSEO requires the least number of lines
of code in all architectures. There are several reasons for this. In GEMSEO, variables
in one discipline are visible in the other disciplines, whereas in the other two frameworks
variables have to be connected and this is achieved through the exposure of variables
from one component to the higher level in the hierarchical model. In turn, the naming
of variables becomes essential. Secondly, OpenMDAO and CoSApp require the definition
of the MDA in the MDF architecture, whereas GEMSEO automatically detects it if it
is specified when the problem is created, and this can be done in a single line of code.
Finally, in CoSApp and OpenMDAO, consistency constraints must be added in the IDF
architecture, but this is not the case in GEMSEO, which ensures consistency if the IDF
architecture is declared.

Table 2: Count of lines of code
GEMSEO OpenMDAO CoSApp

Discipline 15 20 12
Optimization problem (IDF) 15 41 34
Optimization problem (MDF) 19 52 30
Optimization problem (NVH) 12 34 29

One of the main differences between GEMSEO and OpenMDAO (as CoSApp) is that
consistency constraints are embedded in GEMSEO architecture, so the user does not have
to formulate them explicitly. This aspect is translated into a gain in implementation time
and is directly linked to the qualitative criterion of automatic reconfiguration. Indeed,
the effort required on GEMSEO to switch between an IDF and MDF architecture is
considerably lower than in the other platforms (see Tab.3).

3.2 Gradient-based optimization

The results presented in Tab.4 and resumed graphically in Fig.2 have been obtained by
means of the Sequential Least Squares Programming algorithm (SLSQP), which uses the
partial derivatives provided by the user in the Jacobian matrix in each of the disciplines.
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Table 3: Steps required to switch from IDF to MDF

GEMSEO OpenMDAO and CoSApp

Step 1
Suppression of coupling variables from
design space

Suppression of coupling variables from
design space

Step 2 Choice of the numerical solver Suppression of consistency constraints
Step 3 Creation of the MDA
Step 4 Choice of the numerical solver

For both frameworks, the computational time taken to solve the MDF architecture is
superior to that required for the IDF and NVH architectures.

In the MDF architecture, GEMSEO computation time is more than 10 times greater than
OpenMDAO. Further investigation shows that this result strongly depends on the solver
chosen. As a matter of fact, in GEMSEO one can note a difference if a Quasi-Newton
method is employed. As for the number of function and derivative evaluations the ratio
between the two frameworks is lower (around 2). GEMSEO calls the objective function
one more time.

Regarding the IDF architecture, the frameworks show a computation on the order of
hundreds of seconds, while the number of functions and derivatives evaluations is greater
for GEMSEO with 15 more evaluations. The numbers in round brackets indicate the
consistency constraint evaluations that must be explicitly formulated in OpenMDAO,
differently from GEMSEO. The number of calls to the objective function differs by 3
evaluations.

Concerning the NVH architecture, the computation time for GEMSEO is more than
1.5 times greater, the analysis functions and derivatives are evaluated 6 times more.
GEMSEO evaluates the objective function one more time than GEMSEO. The accuracy
of the platforms is equal because the absolute error has the same order of magnitude for
all the configurations.

Table 4: Results for full-analytic gradient-based optimization 1

Architecture MDF IDF NVH
Platform GEMSEO OpenMDAO GEMSEO OpenMDAO GEMSEO OpenMDAO

Computation
time [s]

0.3225 0.0305 0.0529 0.0237 0.0332 0.0172

Function
evaluations

101 50 75 60 (24) 48 42

Derivative
evaluations

98 45 70 55 (22) 42 36

Calls to objective
function

7 6 15 12 8 7

Absolute
error

8.99e-08 8.99e-08 8.99e-08 8.99e-08 8.99e-08 9.02e-08

The results shown in Tab.4 are obtained by providing analytical derivatives between the
input and output variables of each discipline. Both GEMSEO and OpenMDAO allow
defining this in the compute jacobian and compute partials functions, respectively.

1CoSApp does not enable the usage of analytical derivatives
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Figure 2: Results for analytical gradient-based optimization (data are normalized to the
minimum value for each criterion)

CoSApp does not allow specifying analytical derivatives in the disciplines. For this rea-
son, it is not found in the table. If partial derivatives cannot be obtained or explicit
in analytical form, they can be approximated by finite differences or complex steps. In
this work, the first method is used and the results are shown in Tab.5. The comparison
between the Tab.5 and the Tab.4 illustrates that for all the architectures, both GEMSEO
and OpenMDAO take longer to find the optimum and the number of function evaluations
increases.

Concerning the MDF architecture, the order of magnitude of the computation time for
GEMSEO and CoSApp is of the tenth of a second while for OpenMDAO is the hundredth
of a second. As for the number of function evaluations, GEMSEO and CoSApp exceed
OpenMDAO with 314 and 630 evaluations respectively. GEMSEO and CoSApp call the
objective function 8 and 149 more times. In spite of this, the computing time required by
CoSApp is less than that of GEMSEO. This paper cannot explain why as it would require
more thorough investigations, but a clue may be found in the derivative calculations.

Regarding the IDF architecture, OpenMDAO’s computation time is again on the order
of hundreds of a second, while CoSApp and GEMSEO have a computation time on the
order of tenths of a second. GEMSEO and CoSApp exceed the OpenMDAO function
evaluations with 93 and 662 evaluations respectively. As for the calls to the objective
function, GEMSEO and CoSApp require 17 and 131 more evaluations respectively.

In the case of the NVH architecture, all the computation times are in the order of hun-
dreds of a second. Here, OpenMDAO shows the lowest number of function evaluations.
GEMSEO and CoSApp exceed it with 58 and 150 evaluations respectively. OpenMDAO
takes also the least number of objective function calls. GEMSEO and CoSApp are above
it with 8 and 30 more calls respectively.

3.3 Gradient-free optimization

The results presented in Tab.6 and resumed graphically in Fig.4 have been obtained by
means of the Constrained Optimization BY Linear Approximations algorithm (COBYLA),
which constructs successive linear approximations of the objective function and constraints
and optimizes these approximations in a trust region at each step.

The comparison between the Tab.5 and Tab.6 illustrates that for the MDF architecture
a gradient-free algorithm performs better in terms of computation time.
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Table 5: Results for gradient-based optimization with derivatives approximated by finite
differences method

Architecture MDF IDF NVH
Platform GEMSEO OpenMDAO CoSApp GEMSEO OpenMDAO CoSApp GEMSEO OpenMDAO CoSApp

Computation
time [s]

0.4022 0.0401 0.1529 0.1082 0.0354 0.1230 0.0651 0.0250 0.0299

Function
evaluations

534 220 850 351 258 (68) 880 (352) 238 180 330

Calls to objective
function

29 21 170 62 45 176 33 25 55

Absolute
error

4.37e-08 8.99e-08 1.37e-07 8.99e-08 8.99e-08 8.99e-08 8.99e-08 9.02e-08 9.02e-08
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Figure 3: Results for gradient-based optimization with derivatives approximated by finite
differences (data are normalized to the minimum value for each criterion)

Concerning the MDF architecture, the frameworks all show a computation time on the
order of hundredths of a second except GEMSEO which is in the order of the tenth of
a second. The minimum number of function evaluations of CoSApp is equal to 395.
GEMSEO and OpenMDAO exceed it with 14 and 61 evaluations respectively. CoSApp
calls the objective functions 63 more times than OpenMDAO and 62 more times than
GEMSEO. The absolute errors are similar with the largest ratio between CoSApp and
GEMSEO being equal to 1.53.

Regarding the IDF, OpenMDAO’s ans CoSApp’s computation times are in the order
of magnitude of hundredths of a second while GEMSEO is in the order of tenths of a
second. In this case, the number of function evaluations is similar with a minimum of 390
represented by OpenMDAO and CosApp. GEMSEO takes 143 more function evaluations.
As for the objective function, OpenMDAO and CoSApp call it 78 times while GEMSEO
calls it 29 more times. The absolute errors are all in the same order of magnitude.

As for the NVH architecture, all the frameworks have a computation time in the order
of the hundredth of a second. The minimum of function evaluations is 168 obtained with
OpenMDAO and CoSApp at the same time. GEMSEO exceeds it with 120 evaluations.
The number of calls to the objective function is equal for OpenMDAO and CoSApp while
GEMSEO exceeds it with 20 evaluations. The absolute errors are all in the same order
of magnitude.

One should note that the computation time is not one of the most meaningful parameters,
because it can include other platform performances not considered here, like the connec-
tions between variables or other security checks that are performed to prevent algorithms
from diverging. For example, in GEMSEO, the user can activate or deactivate these
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checks, and if all the checks are activated in the configuration API command, the com-
putation time can more than double. Furthermore, it should be noted that in GEMSEO
the COBYLA algorithm is wrapped from NLOPT library ([17]) whereas in OpenMDAO
and CoSApp it is wrapped from SciPy library [18]. This is the reason why the results in
terms of function evaluations and objective function calls are the same for OpenMDAO
and CoSApp in the IDF and NVH architectures.

Table 6: Results for gradient-free optimization
Architecture MDF IDF NVH

Platform GEMSEO OpenMDAO CoSApp GEMSEO OpenMDAO CoSApp GEMSEO OpenMDAO CoSApp
Computation

time [s]
0.1064 0.0244 0.0621 0.1637 0.0302 0.0641 0.0827 0.0113 0.0191

Function
evaluations

409 456 395 533 390 (156) 390 (156) 288 168 168

Calls to objective
function

17 16 79 107 78 78 48 28 28

Absolute
error

8.95e-08 9.54e-08 1.37e-07 8.99e-08 8.86e-08 8.75e-08 8.99e-08 9.23e-08 8.93e-08

0.2
0.4

0.6
0.8

1.0

Computation 
time

Function 
Evaluations

Absolute 
error

MDF GEMSEO
openMDAO
CoSApp

(a) MDF architecture

0.2
0.4

0.6
0.8

1.0

Computation 
time

Function 
Evaluations

Absolute 
error

IDF GEMSEO
openMDAO
CoSApp

(b) IDF architecture

0.2
0.4

0.6
0.8

1.0

Computation 
time

Function 
Evaluations

Absolute 
error

NVH GEMSEO
openMDAO
CoSApp

(c) NVH architecture

Figure 4: Results for gradient-free optimization (data are normalized to the minimum
value for each criterion)

3.4 Optimizers and Solvers

In the approach to MDAO, the choice of the optimizer is an important criterion as it may
strongly depend on the problem to solve. So it is necessary to evaluate the possibilities
offered by each platform. In Tab.7, the classification collects the different optimizers
available for several Python libraries. The first remark concerns the number of algorithms
available in GEMSEO that exceeds the other two frameworks. Secondly, it should be noted
that CoSApp does not allow the use of a genetic algorithm, which is instead available in
various versions in GEMSEO and embedded versions in OpenMDAO.

In MDAO, analysis can be as important as optimization. Thus, it is helpful to compare
the different framework solutions for numerical solvers. Numerical solvers can be divided
into linear and non-linear types, and within the non-linear class there are some based
on Newton’s method and others based on the fixed-point approach. This theoretical
distinction is clearly explained in both the OpenMDAO and GEMSEO documentations.
When using a Newton’s based non-linear solver, a linear solver is always associated and,
unlike CoSApp, both OpenMDAO and GEMSEO allow the user to choose the linear
solver. Table 8 shows an overview of linear and non-linear solvers available in the three
frameworks. GEMSEO and OpenMDAO share a common base consisting of the Scipy
linear solver methods, while for non-linear solvers only GEMSEO allows the reuse of Scipy
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algorithms.

Table 7: Algorithms available. Algorithms marked with E are platform embedded
Python
package

Scipy Pyoptsparse NLopt pSeven pymoo PDFO Other

OpenMDAO

Nelder-Mead
Powell

CG
BFGS

Newton-CG
L-BFGS-B

TNC
COBYLA

SLSQP
Basinhoppin

SHGO
Dual annealing

ALPSO
CONMIN
IPOPT

NLPQLP
NSGA-2
ParOpt
PSQP
SLSQP
SNOPT

- - - -
Differential evolution (E)

Simple Genetic Algorithm (E)

GEMSEO

Differential evolution
L-BFGS-B

Linear Interior Point
Revised simplex

Simplex

SLSQP
SNOPT

TNC
SHGO

Dual annealing

-

NLOPT BFGS
NLOPT BOBYQA
NLOPT COBYLA

NLOPT MMA
NLOPT NEWUOA

NLOPT SLSQP

PSEVEN
PSEVEN FD

PSEVEN MOM
PSEVEN NCG
PSEVEN NLS

PSEVEN POWELL
PSEVEN QP

PSEVEN SQ2P
PSEVEN SQP

PYMOO GA
PYMOO NSGA2
PYMOO NSGA3

PYMOO RNSGA3
PYMOO UNSGA3

PDFO BOBYQA
PDFO COBYLA
PDFO NEWUOA

SNOPT
MMA

CoSApp

Nelder-Mead
Powell

CG
BFGS

Newton-CG
L-BFGS-B

TNC
COBYLA

SLSQP
dogleg

trust-constr
trust-ncg

trust-exact
trust-krylov

- - - - - -

Table 8: Overview of linear and non-linear solvers
Platform GEMSEO OpenMDAO CoSApp

Linear solvers

Direct method based on LU decomposition of a sparse matrix
BIConjugate Gradient method (BICG) 1

BIConjugate Gradient STABilized method (BICGSTAB) 1

Generalized Minimal RESidual method (GMRES) 1

LGMRES method 1

Quasi-Minimal Residual Method (QMR) 1

Direct solver based on the linear equation solving algorithm
of scipy.linalg.solve

Direct solver based on LU decomposition
Linear Block Gauss-Seidel

Linear Block Jacobi
Krylov iterative methods

BICG method 1

BICGSTAB method 1

Conjugate Gradient method (CG) 1

Conjugate Gradient Squared method (CGS) 1

GMRES method 1

-

Non linear solvers

Newton-Raphson’s method
Modified Powell’s method 2

Levenberg-Marquardt’s method 2

Broyden’s methods 2

Anderson mixing method 2

Method based on scalar Jacobian approximation 2

Method based on diagonal Broyden Jacobian approximation 2

Method based on a tuned diagonal Jacobian approximation 2

Method based on Krylov approximatio for inverse Jacobian 2

DF-SANE method 2

Jacobi’s method
GaussSeidel’s method

Newton’s method
Broyden’s method

Non linear Block Gauss Seidel
Non linear Block Jacobi

Newton-Raphson
Broyden’s method

Hybrid Powell’s method

1Wrapped from scipy.sparse.linalg
2Wrapped from scipy.optimize.root

3.5 Visualization tools

The XDSM schema can help engineers in the design phase see the variables exchanged
between different disciplines and the couplings [16]. GEMSEO allows the user to generate
this schema from a xlsx file from Excel in which only the output and input variables in
each discipline, the type of architecture chosen, the design variables and the constraints
must be entered. It is a simple and powerful implementation that can be used in real
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time when the authors of individual subsystem models discuss the interfaces between their
models. As a result, this enables action to be taken before the programming phase. For
example, a discipline expert could set the model to change inputs and outputs to facilitate
the solving of problems and avoid couplings that overcharge the optimization. In addi-
tion, GEMSEO allows the creation of an XDSM diagram automatically from the problem
code. An extensive post-processing toolbox helps the user to analyze the problem results
in GEMSEO. As for OpenMDAO and CoSApp, direct post-processing features are not
available and the user is invited to store the problem data in a recorder in order to build
his own post-processing tools.
Regarding the N2 matrix, all platforms allow its generation, although the user can benefit
from differences in appearance and functionality as they are also dynamic. For example,
this matrix in GEMSEO does not report the solvers used (Fig.5). Between OpenMDAO
and CoSApp, the matrix is identical, although in CoSApp the connections between vari-
ables must be traced by the user and are not automatic (Fig.6, Fig.7).
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Figure 5: N2 matrix - GEMSEO
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4 CONCLUSION

The main objective of the study was to compare the three frameworks of an MDAO
platform for use by a person with previous foundations in the field of multidisciplinary
optimization but without any knowledge and training of each of the platforms investi-
gated. The online documentation was the only source from which to draw all the infor-
mation necessary to use the software. Despite the objectivity of the criteria selected to
compare the platforms on the selected study case, it is necessary to consider a judgment
bias related to the learning sequence of the different software. A user who learns to use
one software before another may have a different opinion than another user who learns
to use them in a different order, particularly regarding handling the main features. The
documentation of OpenMDAO is rich in examples and the distinction between the theory
for the beginner and advanced user helps to follow smoothly a learning path of the main
features of increasing difficulty. On the other hand, GEMSEO presents a more modular
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and open documentation, also rich in tutorials, which puts in the foreground the theo-
retical building bricks of MDAO which, in second place, allows the user to build his first
optimization problem. A strength of GEMSEO is the wealth of documentation related
to post-process tools and the sections dedicated to machine learning and the creation of
surrogate models. For its part, CoSApp mainly documents its practical functionalities
with many tutorials which make it a suitable tool for design, beyond the MDAO purpose.
The optimization is therefore located in a single section and does not cover the core of
the documentation, as is the case with the other two frameworks.
This study highlighted the need for rigor in the MDAO field. Although the concept
of components for OpenMDAO, disciplines for GEMSEO and systems for CoSApp are
based on the same theoretical definition, using different terms in codes intended to fulfil
the same purpose denotes a lack of disciplinary rigor. Moreover, this comparative use of
the three frameworks has also highlighted the lack of interoperability between the various
tools available in open source software category. The GEMSEO roadmap mentions the
intent to work on interoperability with OpenMDAO, while OpenMDAO does not mention
any other software. An exchange between the various tools can benefit the entire MDAO
community by allowing the users to adopt functions from others and bring valuable ele-
ments, as well as stimulating rigor in this field of research.
Given the large number of features these frameworks offer, and at the same time, the
breadth of comparative criteria that could be used, an extension of this work could be the
exploration of broader problems with more variables. Moreover, another study case could
be the connection to external software of high fidelity which opens the way to another
criterion such as the management of different levels of fidelity in the models employed.
The switch from one model to another could be tested and the influence on the accuracy
of the solution analyzed.

REPLICATION OF RESULTS

The results presented in this paper were generated by the source code available at the
following Github repository: https://github.com/RobertoDiGiuseppe/Benchmark.

ANNEXES

1 class MotorTorque(System):

2

3 def setup(self):

4 self.add_inward(’J_mot’)

5 self.add_inward(’N_red’)

6 self.add_inward(’A_max’, fA_max)

7 self.add_inward(’p’, fp)

8 self.add_inward(’F_ema’, fF_ema)

9 self.add_outward(’T_em’)

10

11 def compute(self):

12 self.T_em = self.J_mot * self.A_max * self.N_red / self.p + self

.F_ema * self.p / self.N_red

Listing 1: Discipline definition in CoSApp

1 class MotorTorque(MDODiscipline):
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2

3 def __init__(self):

4 super ().__init__(grammar_type = ’SimpleGrammar ’)

5 self.input_grammar.update (["J_mot", "A_max", "N_red", "p", "

F_ema"])

6 self.output_grammar.update (["T_em"])

7 self.default_inputs = {"J_mot": array ([1]),

8 "N_red": array ([1]) ,

9 "A_max": array ([ fA_max ]),

10 "p": array ([fp]),

11 "F_ema": array ([ fF_ema ])

12 }

13 def _run(self):

14 J_mot , A_max , N_red , p, F_ema = self.get_inputs_by_name (["J_mot"

, "A_max", "N_red", "p", "F_ema"])

15 self.local_data["T_em"] = J_mot * A_max * N_red / p + F_ema * p

/ N_red

Listing 2: Discipline definition in GEMSEO

1 class MotorTorque(ExplicitComponent):

2

3 def __init__(self , derivative_method=’full_analytic ’, ** kwargs):

4 super(MotorTorque , self).__init__ (** kwargs)

5

6 def setup(self):

7 self.add_input(’J_mot’, val =1.)

8 self.add_input(’A_max’, val =1.)

9 self.add_input(’N_red’, val =1.)

10 self.add_input(’p’, val =1.)

11 self.add_input(’F_ema’, val =1.)

12 self.add_output(’T_em’, val =1.)

13

14 def compute(self , inputs , outputs):

15 J_mot = inputs[’J_mot ’]

16 A_max = inputs[’A_max ’]

17 N_red = inputs[’N_red ’]

18 p = inputs[’p’]

19 F_ema = inputs[’F_ema ’]

20 outputs[’T_em’] = J_mot * A_max * N_red / p + F_ema * p / N_red

Listing 3: Discipline definition in OpenMDAO
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Abstract. A persistent challenge with the development of electric vertical take-off and
landing vehicles (eVTOL) to meet flight power and energy demands is the mass of the
load and thermal management systems for batteries. One possible strategy to overcome
this problem is to employ optimization techniques to obtain a lightweight battery pack while
satisfying structural and thermal requirements. In this work, a structural battery pack with
high-energy-density cylindrical cells is optimized using the level-set topology optimization
method. The heat generated by the batteries is predicted using a high-fidelity electrochem-
ical model for a given eVTOL flight profile. The worst-case scenario for the battery’s heat
generation is then considered as a source term in the weakly coupled steady-state thermo-
mechanical finite element model used for optimization. The objective of the optimization
problem is to minimize the weighted sum of thermal compliance and structural compli-
ance subjected to a volume constraint. The methodology is demonstrated with numerical
examples for different sets of weights. The optimized results due to different weights are
compared, discussed, and evaluated with thermal and structural performance indicators.
The optimized pack topologies are subjected to a transient thermal finite element analysis
to assess the battery pack’s thermal response.

Keywords: Multiphysics topology optimization, level-set method, structural battery
pack, electrochemical model, electric vehicles
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1 INTRODUCTION

The aerospace sector is undergoing a significant transformation due to the emergence
of electric aircraft and the advancement of urban air mobility (UAM) concepts. One of
the solutions to UAM is the electric Vertical Take-Off and Landing (eVTOL) vehicles,
which have the potential to alleviate ground traffic congestion and provide a secure and
environmentally friendly alternative to conventional individual transportation. However,
eVTOL vehicles pose fundamental engineering challenges such as noise control and power
requirements. To make eVTOL vehicles a viable transportation option, there is a crucial
need to enhance their power density while ensuring safety by carefully designing the ve-
hicles’ battery packs. By utilizing topology optimization, it is possible to optimize the
distribution of materials in a battery pack with the objective of improving the structural
and thermal performance while minimizing its weight which ultimately contributes to the
overall efficiency of the aircraft. This can eliminate a mechanical and thermal load man-
agement system which is otherwise needed, thus reducing the mass and volume budget.
Therefore, the integration of topology optimization in the development of eVTOL vehi-
cles presents a promising opportunity to move closer to a sustainable and efficient form
of UAM.

In this work, we present a methodology for the multiphysics optimization of a battery
pack for electric aircraft using the level set method. The volumetric heat generation rate
from the batteries is estimated using an electrochemical model and the worst-case scenario
is considered for design optimization. The electrochemical model, heat transfer model,
and elasticity model are introduced in Section 2.1, 2.2, and 2.3 respectively. The level-set
topology optimization method and the optimization problem and workflow are discussed
in Section 3. The methodology is demonstrated with numerical examples in Section 4.

2 MULTIPHYSICS MODEL

2.1 High fidelity electrochemical model

The cell behavior is modeled using the Doyle Fuller Newman (DFN) model [1–4] which
describes the electrochemical response of lithium-ion cells. It is solved for the electric
potentials and lithium-ion concentration distribution in a cell given some electric loads
such as an applied current, voltage, or power. The DFN model in its one-dimensional
version assumes that the charge/discharge process is mainly unidirectional, i.e, only the
effects from one current collector to another are considered. It also assumes that the solid
particles are spherical. The lithium-ion diffusion in these particles is considered by having
a pseudo second dimension associated with the particles’ radius. The governing equations
for the DFN model are the following:

1. Molar conservation in the electrolyte,

2. Solid state Fickian diffusion in the the solid particles,

3. Charge conservation in the electrolyte and in the particles based on Ohm’s law,

4. Intercalation kinetics based on the Butler-Volmer equation which effectively couples
the macro dimension and the pseudo dimension.

The DFN model is implemented using the open-source library PyBaMM [5–7].
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2.2 Heat transfer model

The governing equation for the steady-state thermal model considering thermal con-
duction only is,

∇ · (κ∇T ) +Q = 0 , (1)

where κ is the thermal conductivity, T is the temperature, and Q is the volumetric heat
generation rate. The latter is determined by the electrochemical model by adding the
volumetric heat generation due to Ohmic heating QOhm from the electrical resistance
of the cell, irreversible heating from the electrochemical reactions Qrxn, and reversible
heating due to entropic changes Qrev. The heat transfer model is implemented using
the finite element method and automatic differentiation software, FEniCS and DOLFIN
[8–10].

2.3 Elasticity model

The governing equation of the linear elasticity problem is,

∇ · σ(u) + b = 0 , (2)

where b is the body force, u is the displacement, and σ is the Cauchy stress tensor. The
temperature distribution solved by the heat transfer model resulting in thermal strain εT ,

εT = α∆T , (3)

where α is the coefficient of thermal expansion and ∆T is the temperature increase, that
is, ∆T = T − Tref where Tref is the reference temperature. The constitutive law then
becomes,

σ = C : (ε− εT1) , (4)

where C is the elastic constitutive tensor, 1 is the unit tensor, and ε is the strain tensor
defined as ε = 1

2
(∇u+∇u⊤). The linear elasticity model is implemented in its weak form

using FEniCS and DOLFIN [8–10].

3 TOPOLOGY OPTIMIZATION

3.1 Level-set topology optimization

The optimized design is described by an implicit function ϕ(x) such that





ϕ(x) ≥ 0,x ∈ Ω

ϕ(x) = 0,x ∈ Γ

ϕ(x) < 0,x ̸∈ Ω

(5)

where Ω is the solid domain such that Ω ⊂ D where D is the design domain and D \Ω is
the void domain. The boundary of the solid domain is Γ described by the zero level-set.
The design is iteratively updated by the discretized Hamilton-Jacobi equation,

ϕk+1
i = ϕk

i −∆t|∇ϕk
i |Vn,i , (6)

where k is the iteration number, i is a boundary point, ∆t is the pseudo time-step, and
Vn is the design velocity normal to Γ [11, 12]. The finite element analysis is carried out
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on a fixed grid, i.e., a non-conforming mesh is used. Thus, as the design evolves, the zero
level-set cuts finite elements such that for a given element some nodes of that element
might be inside the optimized design and some might be outside. To address this issue,
the following material interpolation scheme is used,

κe = (γmin(1− γe) + γe)κ ,

Ee = (γmin(1− γe) + γe)E ,
(7)

where γe is the fraction of the element where ϕ(x) > 0, and γmin is a small value, taken as
10−4 for this study, to ensure that the stiffness and conductivity matrices are non-singular.
The optimization is implemented using ParaLeSTO [13] which is a modular open-source
level-set topology optimization code [14, 15].

3.2 Optimization workflow and formulation

The objective function of the optimization problem J is the weighted sum of the
normalized thermal and structural compliance, i.e.,

J (γ, T (γ),u(γ)) ≜ k1
CS

CS0

+ k2
CT

CT0

, (8)

where CS and CT are the structural compliance and thermal compliance defined as

CS = F⊤
SU ,

CT = F⊤
TT ,

(9)

where F T and F S are the thermal force vector and structural force vector respectively.
The normalization factors CS0 and CT0 are reinitialized every 5 iterations. Moreover, let
k ≡ k1 = 1− k2. Thus, Eq.(8) becomes

J (γ, T (γ),u(γ)) = k
CS

CS0

+ (1− k)
CT

CT0

. (10)

Additionally, the volume for the optimized part is constrained such that a fraction ξ of
the design domain is prescribed. Finally, the optimization problem to be solved can be
expressed as

Minimize J (γ, T (γ),u(γ))

w.r.t. γ (11)

subject to Vol(Ω) ≤ ξVol(D)

R1(γ, T (γ)) = 0

R2(γ,u(γ)) = 0

where R1 and R2 are the residuals of the thermal and elasticity models respectively. The
optimization workflow is presented in Fig.1.

4 NUMERICAL RESULTS

4.1 Set up and boundary conditions

The LG CHEM INR21700-M50L cell is used for its high energy density and the prop-
erties are taken from [16]. The power profile is computed using [17] where the energy is
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Figure 1: Optimization workflow

taken as 17.8 Wh [18]. The power profile, the voltage profile obtained with the electro-
chemical model, and the estimated volumetric heat generation rate are presented in Fig.2.

(a) Power profile (b) Voltage profile

(c) Heat generation from power profile

Figure 2: Electrochemical response of 21700 cells for a given power profile

A 3x2 configuration with a spacing of 5 mm between the cells is chosen for the battery
pack. The cells are 70 mm in height with a diameter of 21 mm. The pack is cooled
at the top and bottom assuming a constant fixed temperature. Structurally the pack is
analogous to a cantilever beam with one side fixed and the other subjected to a traction
load of 15 N/mm2. The boundary conditions and the geometry are presented in Fig.3.
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(a) Geometry of the problem (b) Boundary conditions

Figure 3: Geometry and boundary conditions for the numerical examples where only
Dirichlet boundary conditions and non-zero Neumann boundary conditions are given

The battery pack is discretized with 48x32x40 linear hexahedra elements leading to a
total of 265,188 degrees of freedom. The material properties for the study are given in
Table 1.

Table 1: Properties for the thermo-mechanical analysis

Property Aluminum Cell

Thermal conductivity κ [W/m.K] 220.0 1.25
Young’s modulus E [GPa] 68.0 1.5
Poisson’s ratio ν [-] 0.32 0.2
Thermal expansion α [K−1] 21x10−6 10x10−6

4.2 Optimization results

The following weights are investigated k = 1.0, 0.9, 0.7, 0.5, 0.3. The convergence
history for the thermal and structural compliance for the 5 cases is given in Fig.4. First,
the volume constraint is met, and then the objective is gradually minimized until it reaches
the minimum bound. The jump at iteration 100 is caused by a modification in the move
limit value, which limits the amount of change allowed from one iteration to the next.
The optimization results for 3 selected cases are presented in Fig.5. As the value of k
is decreased, we observe a shift in the topology between the cells - from a stiffener-like
structure to one consisting of elements that resemble beams. Additionally, more material
is allocated towards the ends of the batteries to facilitate their connection to the heat
sinks. Finally, the maximum displacement and maximum temperature of the final design
as a function of the weights given to each compliance are given in Fig.6. Once thermal
compliance is taken into account, a significant reduction in the normalized maximum
temperature is observed. However, as the value of k continues to decrease, the decrease in
maximum temperature becomes less pronounced. This trend is similar to what is observed
in the convergence plot shown in Fig.4.
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(a) Structural compliance convergence history (b) Thermal compliance convergence history

Figure 4: Convergence history of structural and thermal compliances for different values
of k. Note that the jump at iteration 100 is due to a reduction of the move limit value

4.3 Transient response of the battery pack

The effective volumetric heat capacity ρcp is taken as 1,767,574 J.m−3.K−1 and 2,430,000
J.m−3.K−1 for the cell and the pack, respectively [16, 19, 20]. The optimized topologies
are analyzed using a transient heat conduction model implemented using FEniCS. An
implicit Euler scheme that is unconditionally stable is chosen for the time discretization.
The temperature time history and temperature distribution are presented in Fig.7. The
maximum temperatures during take-off and landing do not appear to be significantly af-
fected by thermal compliance considerations. These phases are short and the steady state
is not reached. The overall maximum temperature does not seem to be much reduced
when considering the topology optimized for steady-state considerations. Consequently, it
seems worthwhile to consider transient heat conduction topology optimization specifically
for takeoff and landing or for the entire flight but that is beyond the scope of this study.
On the other hand, in the cruise segment where steady-state is reached, considering ther-
mal compliance in the optimization formulation leads to a reduction of more than 10 % of
the maximum temperature. Such a reduction could mitigate battery degradation. More
research is needed to quantify this effect.

5 CONCLUSIONS

In this study, we presented a methodology for conducting thermo-mechanical level-set
topology optimization of a load-carrying battery pack in an eVTOL and employed an
electrochemical model to predict heat generation from the batteries based on a given
flight profile. A multi-objective function that considered both thermal and structural
compliance was minimized. We demonstrated the approach for several cases and analyzed
them using a transient heat conduction model. The methodology can be adapted and
reused for different power profiles, boundary conditions, and pack configurations. In the
future, we plan to expand our research to encompass various power profiles and boundary
conditions, examine degradation and different battery chemistries, and increase the scale
of the thermo-mechanical model.
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(a) top view k = 0.3 (b) top view k = 0.5 (c) top view k = 1.0

(d) front view k = 0.3 (e) front view k = 0.5 (f) front view k = 1.0

(g) isometric view k = 0.3 (h) isometric view k = 0.5 (i) isometric view k = 1.0

Figure 5: Optimization results for selected cases

(a) Maximum displacement (b) Maximum temperature

Figure 6: Maximum displacement and temperature of the final design normalized by the
maximum state of the initial design as a function of k
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Figure 7: Maximum temperature time history normalized by the maximum temperature
time history for k = 1
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Abstract. To reduce the environmental impact of conventional rocket fuels a hybrid fuel
combining a liquid oxidizer and a solid grain is being considered. However, this solution
increases the complexity of the combustion process when compared to solid or liquid op-
tions. Thus, to obtain a fuel that simultaneously minimizes the environmental impact
while providing the highest performance possible a Multidisciplinary Design Optimization
(MDO) problem should be stated. We propose to develop a MDO framework that couples
topology optimization to design the solid grain geometry considering manufacturing con-
straints with a propulsion model to predict the specific impulse generated. In the end, a
multi-objective function comprising structural and performance goals is established.

Keywords: Topology optimization, hybrid propulsion, multidisciplinary design opti-
mization, rocket launcher
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1 INTRODUCTION

Hybrid Rocket Engines (HREs) are rocket propulsion systems with fuels and oxidiz-
ers in different phases of matter, mainly a solid fuel that has a liquid or gas oxidizer.
Traditional HREs have a liquid oxidizer that flow across a solid fuel grain [1].

Figure 1 presents a schematization of a general HRE.

Figure 1: Hybrid Rocket Engine [2]

The idea of a HREs is to have the two propellants in different phases and to store
the oxidizer in a tank separate from the inert fuel. This renders them less susceptible to
chemical explosion than conventional LRE or SRE designs. The heat of the flame and
blowing conditions cause the solid fuel to change its phase to vapor where it is then released
from the fuel wall and contributes to further reactions. Fuel vaporizing or pyrolyzing at
the face of the solid fuel grain causes the surface to regress. HREs are an attractive choice
as an alternative to LREs and SREs, because they combine ideas from both LREs and
HREs and try to benefit from the advantages of these more established engines [3].

The performance of HREs is frequently challenged by the low fuel mass addition, which
depends on the fuel geometry, and the flow rate of oxidizer. Often HREs have varying
performance conditions that shift over the run duration. The primary changes that affect
performance are the oxidizer and fuel ratio [4].

The main and unique proprieties of HREs are summarized below [4]:

• Higher Safety and Manufacturing conditions;

• Performance Parameters coupled with Geometry;

• Less Mechanical Complexity than LREs;

• Less Inert Mass than LREs;

• Less Toxic Exhaust Products than SREs;

• Simpler Control Mechanism like LREs.

A comparison of the properties with LREs and SREs is reported in Table 1, where it
is clearly possible to see how the HREs represent a combination of them.

HREs bring several safety and environmental advantages over the other two systems,
but it has never been commercially widespread. The main limiting factors of HREs
are the low regression rate, due to the nature of the combustion process, and the low
combustion efficiency. The main factors influencing the regression rate are propellant
composition, geometry of the grains, injector configuration and scale. Regarding the
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geometry issues, in the last years, new research trends have been developed that promote
additive manufacturing and rapid prototyping as possible solutions and a beginning point
for further studies [4].

Table 1: Comparison between LRE, SRE and HRE [5]

Liquid Solid Hybrid

Performance (Isp) 250-450 sec 200-280 sec 230-300 sec

Cost High Low Moderate

Complexity High Low Moderate

Throttle-ability Yes No Yes

Restart Yes No Yes

Explosive Hazard Moderate High None

Handling & Transport Risk Moderate High Very Low

Storability Low High Moderate to High

Operational Risk High High Very Low

Environmental Impact Low to High Moderate to High Very Low

1.1 Internal ballistic

To explain the basic function of the HRE internal ballistic, it is necessary to begin
with the geometric definition of the following parameters, considered for a cylindrical fuel
grain illustrated in Fig.2.

Figure 2: Schematic geometric representation of an HRE [4]

Ap = π R2
id (1)

Ṁ = Ṁox + Ap ṙ ρf (2)

Ab = 2π Rid L (3)
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Eq. 1 describes the port area Ap as a function of the inner diameter Rid. Eq. 2
determines the mass flow Ṁ by two factors, the oxidizer flow Ṁox and the fuel flow due
to the regression, this latter written as a function of Ap, regression rate ṙ and fuel density
ρf . Eq. 3 describes the burnt surface Ab as a function of Rid and of length port L.

The main parameter of the internal ballistic is the regression rate ṙ. The regression
equation from classical texts is reported in Eq. 4, where the coefficients a and n are
experimentally determined and are specific to fuel and oxidizer combinations respectively.
On the other hand, the mass flux G relation is obtained analytically and presented in Eq.
5. This latter parameter is the driving one for the rocket performance, because it drives
the regression of the port section.

ṙ = a Gn (4)

G =
Ṁ

Ap

(5)

The correlation of the regression rate with mass flux is typical of HREs, unlike the
SREs that have relationship with the pressure, as described by the Saint/Robert law
[6]. So, HREs have a weak correlation with pressure and the dependency on mass flux
makes their analysis more difficult. By combining the previous two equations one obtains
Eq. 6. Considering the mass flux as constant and simple geometries, it shows an inverse
proportionality to the port radius.

ṙ = a

(
Ṁ

π R2
id

)n

(6)

Finally, comparing Equations 1 and 3, it is possible to notice two of the main HRE
problems. The burned surface is always less than the cross-section area and this leads to
an inconsistent burn rate with time and an inability to easily scale for larger performances.

1.2 Geometries

The regression rate increase is one of the main focus of research and development of
HREs [7]. A possible method to increase the fuel grain surface burn area is the cast-
ing of multiple fuel ports, with a large pre-combustion chamber or multiple injectors.
This is done to reach highly efficient and stable combustion, by improving the fuel mass
flows for oxidizer mass flux levels. However, this multiple port approach presents several
disadvantages [8, 9]:

• Fuel regression rate reduction with the increase in the number of ports, due to the
drop in oxidizer mass flux and the engine diameter size growth;

• Uneven port burning that produces an excessive un-burned mass fraction. Un-
burned fuel slivers can break off the grain and throw chunks out the rocket;

• Increased risk of motor instability related to dynamic flow interactions between
ports and/or the presence of a large pre-combustion chamber;

• Requirement for a substantial pre-combustion chamber or individual port injectors
and embedded support structure needed for multi-port design regression.
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In the last years, rapid prototyping by means of additive manufacturing has been iden-
tified to be a technique to produce geometrically complex grain shapes, that may solve the
HREs performance problems. New concepts like helix ports, coaxial ports, swirls, spiral-
star patterns with central ports have been tested, showing improvements in regression
rate [4, 9]. Many researchers considered ABS with Gas Oxygen as propellant, due to the
easy shape building of this material using Fusion Deposition Modelling (FDM) processes.
Presented analysis has demonstrated that the rotational flow velocity within the fuel port
is a primary driver for the regression rate amplification. Centrifugal flow patterns intro-
duced by the embedded fuel port structures dramatically increase fuel regression rates, by
enhancing surface skin friction, and reduce the effect of radial boundary layer “blowing”
outflow. These two mechanisms work together to enhance the convective heat transfer to
the fuel surface [4, 9]. Lastly, it is important to underline the strong dependence between
the grain geometry and the thrust profile.

1.3 Printable Fuels

In order to reach sufficient levels of regression rates, it is necessary to implement certain
structural and chemical modifications to the fuel grains. A possible solution is the use
of paraffin-based fuels, which inherently exhibit a higher regression rate when compared
to other polymeric fuels due to the lower viscosity that promotes droplet entrapment
within the lame zone [10]. Despite these advantages, paraffin-based fuels suffer from poor
mechanical strength compared to polymeric fuels, which led to the utilization of additives
such as elastomers and thermoplastics at expense of regression rate [11].

About the possibility of using printable fuels to improve performance, researchers are
considering Material Extrusion (ME) processes to print thermoplastic hybrid rocket fuel
grains as ABS, HIPS, HDPE and PMMA. In particular, ABS present good properties to
replace the HTPB, as reported in the studies conducted by Stephen Whitmore at Utah
State University [12, 13].

Whitmore studies led to the development of a model to evaluate the effects of heli-
cal fuel ports on regression rates decomposing it into two components, the skin friction
enhancement and the radial wall blowing suppression. A comparison between helical ge-
ometries of ME-printed ABS burned using gaseous oxygen (GOX) reported an increase
of 75% in regression rates, attributed to the rising of skin friction levels due to the helical
rotation [14]. ME printed ABS samples were also found to exhibit higher consistency in
burn performance, due to the automated nature of the additive manufacturing process
[15]. Additionally, ME printing has been highlighted for its efficient use of volume in
HREs. Despite its affordability and simplicity, one of the main limitations of thermoplas-
tic material extrusion is the immiscibility of the polymers into efficient, novel, composite
hybrid rocket fuels [12].

As mentioned at the beginning of this section, the use of composite fuels can be neces-
sary to improve the performance of HREs, and especially for this reason the ME methods
have high importance. Through this process it is possible to build structural frame-
works of composite fuel, where a second material can be casted or pulverized in printed
molds, obtaining intricate shapes and superior ballistic performances. The additives of
the polymeric matrix are usually pulverized coal, petroleum coke, graphite, and paraffin,
as mentioned at the beginning of this section. ME printed ABS with casted paraffin com-
posite solid fuel grains are a very new and attractive type of fuel, because the melting
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point of the paraffin is lower than the glass transition temperature of the ABS, making
the choice of this process perfect for this combination of materials [12].

In literature, there are many studies about increasing the performance of ABS-Paraffin
fuel and here are reported some examples. Firstly, a research about a fabricated fuel
grain with helical and straight ports with minimal post-processing, facing the incomplete
combustion of ABS and marginal regression rate enhancement of hybrid rockets. Ballistic
tests conducted using GOX resulted in an amplification of the regression rate of about 6
to 7 times under a low O/F ratio of 0.6 [16]. Secondly, another study on printed ABS
substrates with swirl patterns as a framework for casted paraffin, tested using methane
and GOX, reported an increase of 20% in regression rate [17]. Thirdly, another research
conducted by McCulley, about composite fuel grains with varying amounts of ME-printed
ABS and paraffin burned with N2O, showed a maximum regression rate of 3 mm/s under
an O/F ratio of 3.9 [18]. Finally, McKnight made a comparison between star-swirl port
samples in ME-printed ABS and different configurations of diaphragm samples in Paraffin
and Acrylic. The first ones reported an average regression rate between 0.58 and 1.00
mm/s, whereas the second ones marked between 0.48 and 4.79 mm/s, clearly proving
the higher regression rate of paraffin [19]. Over the already mentioned low mechanical
strength of the paraffin, there are other negative aspects. The most significant drawback
of pristine paraffin is the liquefaction behaviour, opposite to the softening phenomenon in
thermoplastics, that makes hard the ME-printing. Hence, printed thermoplastic scaffolds
are necessary to incorporate paraffin-based fuels, dramatically reducing the regression
rates [12].

In conclusion, it is possible to affirm that the ME printed composite fuel grains made of
ABS and paraffin, mostly with helical port, represent one of the best-studied solutions in
the field of HRE fuels printable with Additive Manufacturing. So, it could be considered
a good beginning point for future research and optimization.
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2 METHODOLOGY

Figure 3 portrays the workflow of the multidisciplinary design optimization methodol-
ogy developed in this work. It illustrates all the key functions, along with their respective
input and output parameters, as well as the data structs used, highlighting their main
parameters.

Figure 3: Workflow overview highlighting the main functions and data structures utilized

2.1 Model Definition

This first part consists of propellants selection, creation and definition of the geometry,
and all the material and propulsive parameters that will form the model under analysis.

The optimization was performed on a two-dimensional domain due to the greater sim-
plicity of modeling and computation. Based on the surveyed literature and the data
availability [20], the ABS was selected as the fuel and gaseous oxygen as the oxidizer.

The grain size and propulsive values were chosen taking into account the state of the
art and the possibility of combustion tests to evaluate the results obtained. Specifically,
the works of Yu et al., Mahjub et al. and McFarland et al. were considered most [20–22].

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

511



Mirko Melis, Alain Souza and Frederico Afonso

Particularly, the regression parameters, introduced in Eq. 4, were taken from the work
of McFarland [21], considering 3D-printed ABS itself. On the other hand, the value of
the oxidizer flow was established as a function of the previously established geometrical
parameters, in order to obtain results comparable with those present in the state of the
art. Figure 4 presents the considered domain and Table 2 reports all the main model
parameters.

Table 2: Model parameters [23] [20]

Geometry Material Propulsion

External Radius / Diameter Young Modulus Oxidizer Flow

R = 2.5 cm / D = 5 cm E = 2.5 GPa ṁox = 5 g/s

Internal Radius / Diameter Poisson’s ratio Regression coefficient

r = 0.75 cm / d = 1.5 cm ν = 0.36 a = 0.07

Length Density Regression coefficient

L = 10 cm ρ = 1.07 g/m3 n = 0.0442

2.2 Meshing Process

After selecting and defining the parameters, the next step involved creating the mesh
of the model. The MATLAB R○ codes PolyMesher and PolyTop were used for model
creation and optimization, respectively [24, 25]. These codes are implemented within
the main code, PolyScript. The decision to use these codes as a starting point was
made for several reasons. Firstly, their versatility in creating meshes for domains with
specific geometries makes them particularly suitable, especially when a polygonal mesh is
preferred. Additionally, the availability of the codes and well-drafted documentation made
them easily accessible, thanks to the work of prof. Paulino on Topology Optimization
at Princeton University [26, 27]. Furthermore, the codes exhibit simple, efficient, and
robust characteristics, further supporting their selection as the starting point for the
mesh creation and optimization process.

The Voronoi tessellation implemented within the meshing process allows the use of
polygons for domain creation and requires a brief introduction. The Voronoi tessellation
starts with a set of n distinct points or seeds P and creates, for each of these points, sets of
other domain points that have a smaller distance to the seed than any other seed. These
sets are called Voronoi cells. To achieve a higher level of regularity, the algorithm focuses
on a specific category of Voronoi tessellations known as Centroid Voronoi Tessellation
(CVT). In a CVT, each point y coincides with the centroid yc of its corresponding region.
For a variational characterization of a CVT, it is possible to compute an energy functional
based on the deviation of each region from its reference seed. By minimizing this energy
functional, it is possible to converge to an optimal tessellation. PolyMesher implements
Lloyd’s algorithm to compute CVTs and more uniform polygonal meshes. This algorithm
iteratively replaces the given generating seeds with the centroids of their corresponding
Voronoi regions. It can be seen as a descent method for the energy functional [24]. Figure
4 shows the Voronoi tessellation with Lloyd’s iteration method.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

512



Mirko Melis, Alain Souza and Frederico Afonso

The domain is created within the GrainDomain function, which is called within the
PolyMesher function responsible for generating the mesh for the selected domain. The
input data for GrainDomain includes the inner radius r and outer radius R of the cylindrical
domain, as well as the applied pressure pc as a load condition. As for the load and
constraint conditions, highlighted in Fig.4c, the structure is constrained at the nodes
along the outer circumference of the domain, while a radial pressure pc of 1 bar is applied
at the nodes along the inner circumference of the domain.

The input data for PolyMesher are the function containing the domain (Domain),
the desired number of elements (NElem), the maximum number of Lloyd’s iterations
(MaxIter), and optionally, an initial set of seeds (P). A double symmetry of the mesh
was enforced, and a number of 500 elements were chosen to ensure that the area of each
element is larger than the average resolution of FDM printing (thus avoiding printing
issues or the need for subsequent AM filters) and to obtain a higher number of itera-
tions and data in the regression analysis, due to the significant number of elements. The
obtained mesh is reported in Fig.4.

(a) Initial Random Points (b) After 10 Iterations (c) Final Mesh

Figure 4: Meshing process with Voronoi tessellation and Lloyd’s iteration method

2.3 Structural Analysis

Structural analysis involves applying the Finite Element Method (FEM) to calculate
the compliance of the entire structure, which is computed as the dot product of forces
and displacements of individual nodes [25]. The subsequent goal of optimization is to
minimize this parameter, corresponding to the minimization of structural deformations.
This objective is pursued to ensure greater structural integrity of the 3D-printed grain,
avoiding excessive deformations during combustion and unexpected variations in rocket
propulsion parameters and performance. To perform this analysis, the FEAnalysis func-
tion within the PolyTop code is utilized, and its documentation is referred to for a deeper
understanding of the implemented code [25]. FEAnalysis enables FEM analysis of meshes
composed of polygonal elements. It assembles the stiffness matrix of the entire structure,
starting from the stiffness matrix of each polygonal element, and calculates the displace-
ment of each individual node, considering the forces acting on the nodes resulting from
the boundary conditions. FEAnalysis has been used as an objective function both within
PolyTop and as a standalone implementation in NSGA-II, as will be evident in the subse-
quent sections. Therefore, the function takes into account the design variables, namely the
volume fraction of each element, in the evaluation of the stiffness value for each element.
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2.4 Regression Analysis

The grain regression analysis has been implemented through the PolyReg function,
which has been developed from scratch. PolyReg simulates the grain regression based on
the geometry of the structure (fem struct), the design variables V , and the propulsion
parameters (prop struct), which have been described in Section 2.1 and are listed in Table
2. Figure 5 illustrates the flowchart of the code.

Figure 5: PolyReg Flowchart

Oxidizer mass flux G and regression rates ṙ are calculated as follows:

ṙ = a Gox
n (7)

Gox =
ṁox

Ac

(8)

Where a, n are the regression coefficient reported in Table 2, ṁox is the oxidizer mass
flow and Ac is the combustion chamber area.

2.5 Performance Analysis

The calculation of performance is carried out using the PolyPerf function, which is also
developed from scratch. PolyPerf utilizes a database created using NASA CEA Software
R○ [28], relying on chemical equilibrium to perform performance analysis. The inputs of
this function are the prop struct and the PolyReg output, i.e. regression rate ṙ, chamber
area Ac and chamber perimeter pc.

NASA CEA Software is based on the principle that by knowing the chemical equilib-
rium compositions of a chemical system, it is possible to calculate the theoretical thermo-
dynamic properties of the system. The documentation of NASA CEA Software is referred
to [28–30] for a deeper understanding of the software.

Within PolyPerf, various propulsive parameters are calculated, including fuel mass
flow ṁf , combustion chamber mass flow ṁcc, O/F Ratio O/F , and combustion chamber
pressure pcc, as described in Eq.9, 10, 11 and 13 [1]. The latter two parameters are used
as input for the CEA Database data structure, from which the corresponding performance
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values are extracted. The workflow of the function is depicted in Fig.6, which also includes
all the output parameters of the CEA Database. It should be noted that other parameters
used as input for the initial iteration include the temperature value T0 = 298 K, the air
heat capacity ratio value of γ = 1.4 (whose values are iteratively updated) and the specific
gas constant value of R = 287 J/(KgK).

ṁf = ṙ ρf pc L (9)

ṁcc = ṁox + ṁf (10)

O/F =
ṁox

ṁf

(11)

p0 =
ṁcc

ζd Ath

√
T0 R

γ

(
γ + 1

2

) γ+1
γ−1

(12)

pcc = p0

(
Tcc
T0

) γ
γ−1

(13)

Regarding the equations presented in this paragraph, some specifications need to be
made. In Eq.10, L represents the length of the grain. Equation 12 represents the chamber
pressure pcc assuming an ideal nozzle, where ζd denotes the discharge correlation factor
(due to cooling, changes in specific heat ratios, incomplete combustion) that is considered
to be unity. Ath represents the throat area of the nozzle and is considered equal to the
chamber area Ac. Equation 13 corrects the previous chamber pressure p0 calculation using
the combustion gas burning rate. This assumes an adiabatic expansion with a constant
specific heat ratio, which is valid only for small pressure changes [1]. In this equation, Tcc
represents the chamber temperature, a value provided iteratively by the CEA Database.

Figure 6: PolyPerf Flowchart
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2.6 Topology Optimization

As mentioned in Section 2.2, in the early part of this work, the PolyTop function im-
plemented in the PolyScript code, along with PolyMesher, was used. PolyTop performs
the topological optimization of the domain generated by PolyMesher by implementing
the Optimality-Criteria Algorithm (OC) using the SIMP Method. In the later part of
this work, it was replaced by NSGA-II to leverage the characteristics of genetic algorithms
for multidisciplinary optimization of the structural and propulsion aspects. This could
not be implemented in PolyTop due to the lack of sensitivities regarding the propulsion
part, as there are no explicit connections with the geometry.

PolyTop internally uses numerous functions, and again, reference is made to the re-
spective documentation for in-depth understanding [25]. The inputs of this function are
the geometric and structural parameters, contained in the fem struct, and the optimiza-
tion parameters, contained in the opt struct. These are described in Table 3. The design
variables considered are the volume fractions of each ’free’ element of the domain. The
free elements are defined as all elements within the domain to which no loads or con-
straints are applied, i.e., all elements except those forming the boundary of the outer and
inner circumferences. The constraint function is formed by the volume fraction, which
represents the percentage of final domain area compared to the initial area. The default
objective function is compliance, addressed in Section 2.3, which is minimized until con-
vergence is reached. The output of PolyTop consists of the optimal values of the design
variables, considering the imposed parameters. Figure 7 shows an example of topology
optimization of the domain, performed with an 80% volume fraction constraint.

Table 3: Fields list of the opt data struct [25]

opt.zMin Lower bound for design variables
opt.zMax Upper bound for design variables
opt.zIni Initial array of design variables
opt.MatIntFnc Handle to material interpolation function
opt.P Matrix that maps design to element variables
opt.VolFrac Specified volume fraction constraint
opt.Tol Convergence tolerance on design variables
opt.MaxIter Max. number of optimization iterations
opt.OCMove Allowable move step in the OC update scheme
opt.OCEta Exponent used in the OC update scheme

Figure 7: Optimized domain with 80% Volume Fraction constraint
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2.7 Multidisciplinary Optimization

Multidisciplinary optimization was implemented using the NSGA-II algorithm [31]. The
choice of the optimizer fell on genetic algorithms due to the difficulty in computing sen-
sitivities. Genetic algorithms, with their strong numerical nature, can be helpful in cases
where the gradient of the objective function is unknown. The only obstacle in this case is
the large number of variables, specifically the 404 free elements in the considered mesh,
which led to high computational costs and long execution times.

NSGA-II is a non-domination based genetic algorithm for multi-objective optimization,
and its documentation is referred to [31] for a complete understanding of the code. In
the code, two objective functions were set, namely compliance and specific impulse (Isp).
There are 404 design variables, and their lower and upper limits are set to 0 and 1, re-
spectively. It should be noted that, in order to perform the structural analysis, zeros are
considered as very small values (1e-4) within the FEAnalysis function. The remaining
input parameters include the population size (pop) and the number of generations (gen),
which determine the size of the initial pool of chromosomes and the number of cross-
breeding iterations between chromosome families. Initially, analyses were conducted with
pop = 1000, which is an order of magnitude larger than the number of design variables,
and gen = 100, which is the same order of magnitude as the number of design variables.
This principle is considered as a rule of thumb and was taken as a starting point, con-
sidering a substantial pool relative to the problem at hand. We were aware that further
evaluations would be made depending on the results and the required analysis times of
the initial tests [32].

Figure 3 in the beginning of this chapter depicts the complete workflow of the main
multidisciplinary optimization performed. It includes all the functions used, along with
their input and output parameters, as well as all the data structs utilized, highlighting
their key parameters. It can be observed that the workflow begins with the model defini-
tion, involving the construction of the fem struct using the GrainDomain and PolyMesher

functions. The core of the process is represented by the NSGA-II genetic algorithm, which
takes all the data structs (fem, prop, CEA Database) as input. NSGA-II invokes the
FEAnalysis function to compute the structural objective function and the PolyReg and
PolyPerf functions in sequence to calculate the propulsion objective function. At the end
of the analysis, the chromosomes are obtained, representing the set of design variables
for each population family along with their respective objective function values. These
chromosomes are then used to form the Pareto front of the obtained solutions, which
represents their visualization on a graph with the two considered objective functions as
the x and y axes.
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3 PRELIMINARY RESULTS

3.1 Regression Results

To validate the regression analysis performed using the PolyReg function, a combustion
test simulation was conducted for which experimental results were known. The geometric
and propulsive conditions reported by Yu et al. [20] were recreated, and the regression
coefficients mentioned in Section 2.1 and Table 2 were used. The grain considered has a
cylindrical type with R = 8 mm and r = 2.3 mm. Fuel and oxidizer were consistently
considered as ABS and pure gaseous oxygen, respectively. Specifically, the regression
coefficients for printed ABS with 100% packing density were considered. Figure 8 presents
the data obtained using the PolyReg function alongside the experimental data reported
in the work of Yu et al. [20], regarding the printed ABS with 100% packing density and
solid ABS. One can observe that the regression rate trends are completely overlapping
with the experimentally obtained ones, indicating the effectiveness of the developed code.
Furthermore, it is noticeable that the regression rate of printed ABS is higher than that
of solid ABS, and for a detailed understanding of this phenomenon, reference is made to
the aforementioned paper [20].

Figure 8: Comparison of regression rate values obtained experimentally and by PolyReg

[20]
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3.2 Multidisciplinary Design Optimization Results

Several multidisciplinary optimizations were conducted with the aim of minimizing
compliance and maximizing specific impulse. The same mesh, as previously shown, was
used to allow for comparisons between different analyses. Various genetic parameters
were tested to obtain the best possible analyses, balancing both the quality of the results
and the predicted simulation times. Figures 9, 10 and 11 depict the three main analyses
performed, which yielded the best results. All the figures show the obtained solutions
plotted in blue on a graph with compliance on the x-axis and specific impulse on the
y-axis. Table 4 presents the key data of the performed analyses, including the initial
genetic parameters, the values of the objective functions, and the corresponding figure for
each analysis.

Table 4: Analysis results

Analysis Population Generation Ispmax Compliancemin Figure

1 1000 100 108.4 s 3.8 · 10−3 Figure 9

2 2000 50 98.5 s 4.2 · 10−3 Figure 10

3 2000 90 100.3 s 3.2 · 10−3 Figure 11

Figure 9: Pareto front of the MTO analysis with 1000 populations and 100 generations

Upon analyzing the obtained Pareto fronts resulting from the multidisciplinary design
optimizations, it becomes evident that the values of the objective functions are signifi-
cantly influenced by the initial population. While the Pareto fronts generally exhibit the
expected behaviour, it is important to note that a considerable portion of the designs
still hold a rank higher than 1, indicating that the solutions have not yet fully converged.
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This is expected due to the high-dimensionality of the problem, with numerous design
variables and complex interactions.

Figure 10: Pareto front of the MTO analysis with 2000 populations and 50 generations

Figure 11: Pareto front of the MTO analysis with 2000 populations and 90 generations
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4 CONCLUSIONS

The regression analysis, based on the work of Yu et al. [20], effectively simulated the
combustion test by utilizing the same geometric and propulsive data.

The results obtained from the multidisciplinary design optimizations using genetic
algorithms have provided valuable insights.

One noteworthy observation is the considerable influence of the initial population con-
figuration on the outcomes of the optimizations conducted, as expected given the large
number of design variables. By observing Table 4, in Section 3.2 it is evident that there
are significant variations in the optimized values of compliance and specific impulse (Isp)
among the different analyses. This suggests that increasing the number of populations
may be necessary to obtain more robust and reliable results. However, it is important to
consider the trade-off between the quality of results and the computational time, as the
latter tends to exponentially increase with larger population sizes.

In terms of the specific impulse maximization, no well-defined geometric pattern emerged,
contrasting with the compliance minimization which involved topological optimization.
This indicates a weak correlation between Isp and the geometric shape of the grain,
warranting further investigation into the underlying factors that contribute to Isp.

Overall, these findings highlight the complexity and multifaceted nature of the opti-
mization process, emphasizing the need for thorough analysis and exploration to achieve
optimal performance in hybrid rocket fuel design.
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5 FUTURE PERSPECTIVES

The findings presented in this paper should be considered as an initial phase of a
broader study that requires further exploration. Additional analyses will be conducted to
obtain more robust results, and the implementation of further investigations or research
avenues is also being considered to expand the horizons of this research.
These possibilities include:

• Multidisciplinary Design Optimization Analyses

Leveraging advanced MDO strategies can further enhance the efficiency and effec-
tiveness of the optimization process. This will lead to the discovery of optimal
designs that maximize performance while considering multiple disciplines simulta-
neously.

• Experimental Validation

Future studies should prioritize the execution of comprehensive experimental cam-
paigns to validate the performance of hybrid rocket engines under real-world condi-
tions, by conducting side-by-side comparisons of: different fuel combinations, pro-
pellant formulations, and combustion strategies.

• Exploration of Novel Fuel Combinations

Analyzing and evaluating different fuel combinations is crucial to expanding the
performance capabilities of hybrid rocket engines. Future research should focus on
investigating alternative propellants, exploring high-energy additives, and consider-
ing sustainable and eco-friendly fuel options. By studying the impact of these fuel
combinations on performance and optimization, it is possible to unlock new possi-
bilities and advance the work towards greener and more efficient propulsion systems.

• Advancement towards 3D Geometries

Transitioning from 2D to 3D geometries will provide greater freedom and flexibility
for optimization, enabling the exploration of more complex designs. Future research
should focus on developing advanced computational models capable of capturing the
intricate flow and combustion phenomena in three-dimensional space.

• Integration of Computational Fluid Dynamics (CFD) Analyses

Implementing CFD analyses into the design and optimization process will signif-
icantly contribute to improved thermal and propulsion results. By studying the
evolution of the flow field, heat transfer, and combustion processes, CFD simula-
tions can provide valuable insights into the performance characteristics of hybrid
rocket engines.
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Abstract. Aeroelastic analysis plays a crucial role in the design and evaluation of aircraft
structures, ensuring their structural integrity and dynamic stability under aerodynamic
loads. However, conducting detailed aeroelastic simulations using high-fidelity compu-
tational methods can be computationally expensive. This paper proposes an approach to
reduce the computational cost of aeroelastic analyses through the use of surrogate modeling
techniques based on machine learning. Surrogate models act as efficient approximations
of the complex aeroelastic simulations, providing accurate predictions of critical parame-
ters while significantly reducing the computational cost. The Goland wing is utilized as a
the baseline configuration, and aeroelastic simulations are performed using the SHARPy
framework, an open-source Python tool developed by Imperial College London, to gener-
ate the data-set required for surrogate model training. The trained surrogate regression
models are capable of predicting important aeroelastic quantities, including flutter speed,
mass, and lift and drag coefficients. Moreover, a multi-objective optimization framework is
employed to maximize the lift-to-drag ratio and minimize the structural mass while consid-
ering a flutter constraint, improving the effectiveness of the preliminary design process.

Keywords: Aeroelasticity, multidisciplinary design optimization, multi-objective opti-
mization, wing design, surrogate models
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1 INTRODUCTION

The study of aeroelastic phenomena, namely flutter, at the early aircraft design stages
is becoming crucial given the trend of increasing wing slenderness to improve aerodynamic
performance [1]. To face this challenge, researchers are planning to leverage from Multi-
disciplinary Design Optimization (MDO) strategies to achieve optimal solutions that are
able to maximize performance while complying with flutter constraints [2]. However, the
main hurdle that these MDO strategies face is the high computational cost associated
with aeroelastic analyses, especially those presenting a nonlinear behavior [2].

With the goal of minimizing the computational cost in mind, different approaches
are being considered, namely multi-fidelity models [3, 4], conventional [5] and machine
learning-based [6] surrogate models, and reduced-order models [7].

Low-fidelity (LF) [8], high-fidelity (HF) [9, 10], and multi-fidelity (MF) [11, 12] models
have all been tested in different flutter constrained MDO problems of wings. These models
span from LF models such as potential flow theory and panel methods with corrections
[8, 11, 12], accounting for both compressibility and viscous effects, to Euler [11] and HF
Reynolds Averaged Navier-Stokes (RANS) solvers [9, 10, 12]. Most of these optimization
problems aimed at maximizing range [8, 9, 11], although fuel burn [12] and structural
mass [10] minimization has also been chosen.

Even though reduced-order and surrogate models have been applied to aeroelasticity
problems for some time [13], their usage for MDO problems considering flutter is scarce
[14] in open literature, in particular for MDO problems considering aerodynamic perfor-
mance and structural weight. The same observation is noticed for machine learning-based
strategies. Nevertheless, this research field is starting to emerge. For instance, Sohst et
al. [15] developed a MDO strategy that resorts to multi-fidelity solvers and surrogate
models to design strut-braced and high aspect-ratio wings considering flutter and stress
constraints. They found that although the flutter constraint was respected in the opti-
mization process, unaccounted buckling was observed in a nonlinear assessment of the
optimized strut-braced wing aircraft design. Toffol and Ricci [16] developed a methodol-
ogy combining in-house codes with surrogate models to optimize the structural layout of a
conventional aircraft such that its mass is minimized while considering stress and flutter
constraints. Moreover, the scientific community has been conducting work on specific
unsteady nonlinear aeroelasticity problems that arise from unconventional features, such
as limit cycle oscillations [17–20].

The current paper aims to provide a different surrogate-based optimization methodol-
ogy to conceptually design wings considering aerodynamics and structural metrics while
respecting a flutter constraint.

2 METHODS AND TOOLS

The developed methodology follows the 3 common steps in an offline1 surrogate-based
optimization: (i) data-set definition and generation; (ii) surrogate model training, valida-
tion and testing; and (iii) optimization process. All these tasks were done using available
open-source Python codes and especially implemented Python scripts for this work.

Firstly, the Goland’s wing [21] was selected to be the baseline model for this work.

1In other words, no infill points are used to update the surrogate model during the optimization
process.
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The reason for this choice was two-fold: (i) the existence of experimental data to val-
idate the implementation; and (ii) since it was already used to validate SHARPy [22],
the open-source code chosen for the aeroelastic simulations. SHARPy provides a cou-
pled aeroelastic solution, considering the Unsteady Vortex Lattice Method (UVLM) [23]
and Geometrically Exact Beam Model (GEBM) [24, 25] for aerodynamics and structural
analyses, respectively. Krylov and modal projections are used in SHARPy to linearize
aerodynamic and structural subsystems, respectively. These are then used for estimat-
ing the flutter speed by means of the iterative p-k method at the nonlinear aeroelastic
equilibrium. The flutter speed was predicted in SHARPy implementation used for this
work to be under 5% of relative error, in agreement with the value obtained by SHARPy
developers [26].

In what concerns the design variables, the choice rested on wing aspect-ratio (AR),
sweep angle (Λ), torsional stiffness (GJ), and angle of attack (α). The upper and lower
boundaries of these parameters are listed in Table 1 alongside the initial value that cor-
responds to the Goland’s Wing.

Table 1: Design variables and respective boundaries used for the data-set generation and optimization
problem.

Design Variable Initial Lower Boundary Upper Boundary Units
Aspect-ratio (AR) 6.67 6 16 -
Sweep angle (Λ) 0 0 40 deg

Torsional stiffness (GJ) 0.99×106 0.70×106 1.70×106 N.m2

Angle of attack (α) - -5 15 deg

Latin Hypercube Sampling (LHS) was chosen to generate a representative data-set of
this design space, although other sampling techniques could have been employed. For
this work, 1480 samples were built using the LHS implementation from pyDOE2 [27]
open-source package. Subsequently, aeroelastic simulations were run in SHARPy for each
sample to determine lift (CL) and drag (CD) coefficients of the wing at cruise conditions
(a speed of Vcr = 30 m/s and sea level conditions), its mass, and flutter speed. Then, this
data-set was divided in 60% for training the surrogate model and 30% for validating it,
reserving 10% for testing.

Different machine learning models from the scikit-learn Python library [28] were tested
to select the one that yields the highest R2 and the lowest mean average error (MAE)
in the validation phase. These included the following regression-based models: Bayesian
Ridge, Decision Tree Regressor, Extra Trees Regressor, Lasso, ARD Regression, and
Linear Regression. In the end, the Extra Trees Regressor was selected since it presented
the highest R2 and the lowest MAE, as can be seen in Table 2.

To have a more clear understanding of the suitability of the chosen surrogate model for
aeroelastic analyses throughout the design space, a visualization of parameters used to
compose the objective function (lift-to-drag ratio and mass) and constraint (flutter speed)
is provided in Figure 1 for the testing data-set.

As one can notice from Figure 1, the surrogate model predicts well both the mass
(R2 = 9.99×10−1) and lift coefficient (R2 = 9.98×10−1). Slightly higher discrepancies
between surrogate and SHARPy results (R2 = 9.97×10−1) are observed in the drag coef-
ficient, especially for higher values. However, it is for the flutter speed that the differences
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Table 2: Comparison between different machine learning models, available in the scikit-learn python
library [28] to evaluate their suitability for capturing the aeroelastic features of the problem at hand.

Method R2 (-) Mean Average Error (%)
Bayesian Ridge 2.48×10−1 26.7

Decision Tree Regressor 5.83×10−1 19.88
Extra Tree Regressor 9.17×10−1 8.96

Lasso 2.47×10−1 26.7
ARD Regression 2.50×10−1 26.7
Linear Regression 2.49×10−1 26.7

(a) Lift Coefficient (CL) (b) Drag Coefficient (CD)

(c) Wing Mass (d) Flutter Speed

Figure 1: Visual comparison of the results obtained using the SHARPy simulations (in blue) and the
surrogate model (in orange) in the testing phase of the surrogate model.

are higher (R2 = 9.17×10−1). This is an expected outcome since flutter speed (Vflutter) is
estimated through an iterative algorithm, namely the p-k method. A remark should be
made in regard to the drag coefficient which for several designs is two orders of magnitude
lower than usual values (in the order of 10−2) since no viscous nor compressibility2 effects

2This latter effect is not relevant for the considered cruise speed although it might become relevant if
cruise speed is increased.
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are considered in the aeroelastic simulations. There are some effort being conducted by
SHARPy team [29] to include viscous considerations in the UVLM, which are typically
not of major importance when the focus is on aeroelastic phenomena. Furthermore, some
high relative errors were noticed during the validation phase for the lowest values of drag
that are diluted in the MAE. As a consequence, the lift-to-drag ratio is expected to be two
orders of magnitude higher than usual. Nevertheless, these values were deemed acceptable
for testing the methodology developed for this work.

The last step is solving the optimization problem whose statement is:

minimize f (−CL/CD, mass)

with respect to x = (AR, Λ, GJ, α)

subject to c = Vcr − (Vflutter/1.5) ≤ 0

, (1)

where f , x, and c denote the classical notation for objective functions, design variable set,
and constraints, respectively. Since this is a multi-objective problem and the run time of
the surrogate model is inexpensive a gradient-free optimizer was chosen to better explore
the design space, namely the implementation in pygmo [30] of the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [31].

3 PRELIMINARY RESULTS

A population size of 100 individuals and 284 generations were considered for the first
optimization problem. The Pareto front followed the expected trend: (i) when CL/CD

is the objective, the optimizer prioritize aspect-ratio increase and zero angle of attack to
reduce the induced drag; and (ii) the opposing effect is noticed for mass minimization,
where the optimizer led the aspect-ratio to its minimum value and increased the angle of
attack.

Additionally, as reported earlier, the lowest values of drag coefficient calculated by
the surrogate model present higher relative errors and provide an underestimation of it
in regard to the SHARPy simulations. These discrepancies between optimal solutions
obtained with the surrogate model and aeroelastic simulations are shown in Table 3.

Table 3: Relative differences between surrogate model and aeroelastic simulations for the designs that
maximize CL/CD and minimize mass.

Objective Difference in CL/CD (%) Difference in Mass (%)
CL/CD maximization 14.9 0.03

Mass minimization 5.1 0.21

Regarding the structural mass estimation the relative difference is lower than 1% high-
liting the accuracy of the surrogate model is estimating this parameter.

4 CONCLUDING REMARKS

A surrogate-based optimization methodology for designing wings considering both per-
formance and aeroelasticity metrics was successfully implemented recurring to open-source
Python codes. It was tested to solve a multi-objective optimization problem, using 1480
samples generated by means of LHS to train and validate an Extra Trees Regressor surro-
gate model. The testing showed that the chosen surrogate model adequately represents the
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SHARPy solver. However, this methodology still requires further improvements, namely
in what concerns the surrogate model accuracy to predict the flutter speed and lift-to-
drag ratio. Additional optimizations with different parameters, for instance increasing
the cruise speed, need to be conducted to gain further insights. Moreover, a multi-fidelity
approach to run HF RANS simulations on the wing nonlinear aeroelastic equilibrium at
cruise conditions could improve the accuracy of the aerodynamic objective.
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Abstract. Aeroelastic Multidisciplinary Design Optimization (MDO) has emerged as
a powerful approach to address the complex design challenges faced in the aerospace in-
dustry. The integration of numerical tools such as computational fluid dynamics (CFD)
and finite element analysis (FEA), enable engineers to explore a wide range of design
variables and constraints efficiently. These tools provide insights into aerodynamic per-
formance, structural integrity, and control system stability, aiding in the identification
of optimal or near-optimal designs. While numerical simulations and optimization al-
gorithms provide valuable insights into the behavior and performance of aircraft designs,
experimental validation remains crucial to confirm and refine the results but mainly to
bridge the gap between simulations and real-world performance. However, this represents
a challenge still today due to the complexity and cost of wind tunnel and in-flight testing,
together with the safety issues. In recent years, a lot of interest arose around the possi-
bility to perform at affordable cost low speed aeroelastic wind tunnel test. Despite specific
phenomena such as the ones related to highly transonic regime cannot be investigated, the
low-speed wind tunnel tests can be helpful if used like a design tool, and not just as a
verification step. Aiming at this goal, it is necessary to develop a set of dedicated equip-
ments, technologies and ad hoc implemented test strategies. In conclusion, aeroelastic
multidisciplinary optimization, supported by numerical tools and experimental validation
through wind tunnel testing, appears like a comprehensive framework for designing high-
performance and safe aircraft. The integration of these approaches allows engineers to
achieve optimal designs that balance aerodynamic performance, structural integrity, and
control system stability, ultimately pushing the boundaries of aircraft design in terms of
efficiency and safety. Further research in this field holds the potential to revolutionize
the aviation industry by delivering advanced aircraft designs with enhanced performance
characteristics, helping the zero-emission long term targets. The presentation, after a
quick recap on basics concerning aeroelastic MDOs, will present a summary of ten years
of aero-servo-elastic testing at large POLIMI’s wind tunnel.

Keywords: fluid-structure interaction, computational fluid dynamics, finite element
analysis, optimal design, numerical simulations, wind tunnel testing
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Abstract. Automatic differentiation is implemented in level set topology optimization.
The modularized LSTO architecture used here allows for the combination of the classical
level set method with automatic differentiation. Stress minimization is used to conduct a
comparative study in the computational efficiency, memory requirements and their effects
on scaling of different operator overloading AD libraries. Then, the sparsity of the level set
method in combination with a hybrid AD mode is employed to improve the efficiency and
memory consumption of the operator overloading technique in automatic differentiation.

Keywords: Level set topology optimization (LSTO), automatic differentiation (AD),
operator overloading (OO), sparsity, hybrid implementation
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1 INTRODUCTION

Topology optimization has been proven to be a useful tool for innovative designs in
the aerospace industry. An essential part in the process is the computation of robust and
accurate gradients of the objective and constraint functions with respect to the design
variables. These design sensitivities drive the optimization procedure in order to converge
to the optimized designs. Traditionally the computation of sensitivities in topology op-
timization is done using analytical methods such as the adjoint approach, which provide
accurate sensitivities efficiently. However, the analytical derivation can be challenging
and error prone as the complexity of the problem at hand increases. Cases governed
by coupled multiphysics such as fluid-structure interaction problems can be classified as
being challenging to differentiate analytically. Moreover, automation and interoperability
become difficult since manual differentiation needs to be repeated to consider different
objectives and constraints.

An alternative approach for the computation of sensitivities is automatic differentiation
(AD) [1]. AD provides automated sensitivities by systematically applying the chain rule
of differentiation to computer programs. The main idea is that even complex codes can
be broken down into a sequence of elementary operations that are simple enough to
differentiate. This automates the sensitivity computation process while the accuracy of
the obtained sensitivities can be as accurate as the analytical methods.

Several works explored the use of AD in topology optimization. Laniewski and Rokicki
[2] developed a topology optimization framework for a variety of multi-physics fluid flow
problems. Nørgaard et al. [3] applied AD in density-based topology optimization for
transient wave propagation and the lattice Boltzmann method. Chandrasekhar et al. [4]
revisited AD illustrated the use of AD throught the JAX library [5] in an educational
paper and Dilgen et al. [6] employed AD to perform topology optimization of turbulent
flows.

In this work automatic differentiation is explored in the context of level set topology
optimization (LSTO). The modularized level set topology optimization used here enables
the AD application in combination with the classical level set method. The operator over-
loading approach [7] is the main interest here due to its non-intrusive nature that requires
only minor modifications to the original code. The investigations include comparing op-
erator overloading libraries in terms of efficiency, using an example of stress minimization.
The main contribution of this work is to combine the sparsity of the level set method with
operator overloading to improve the efficiency and memory consumption when computing
element sensitivities. One of the advantages of the level set method used here, is that
sensitivities are only required within a narrow band close to the level set boundary. Thus,
operator overloading is only needed to compute these boundary sensitivities rather than
the sensitivities of the entire domain. The obtained results indicate that by taking advan-
tage of this sparsity the computational time and memory consumption can be improved.
We further investigate the use of a hybrid operator overloading mode.

2 MODULARIZED LSTO

An overview of the LSTO used in this work is provided in this section. Further details
can be found in [8] and [9]. Using the level set field a structure can be defined as
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ϕ(x) ≥ 0, x ∈ Ω,

ϕ(x) = 0, x ∈ Γ,

ϕ(x) < 0, x /∈ Ω,

(1)

where ϕ(x) is the level set function evaluated at point x, Ω is the structural domain, and
Γ is the boundary. The level set advection equation [10] is solved to update the level set
function at each iteration

dϕ

dt
+ |∇ϕ(x)|Vn(x) = 0, (2)

which upon discretization becomes

ϕk+1
p = ϕk

p −∆t|∇ϕk
p|Vn,i (3)

where p is a nodal point on the level set grid, k is the iteration number, and ∇ϕ is
the level set function gradient, computed using the Hamilton-Jacobi weighted essentially
non-oscillatory scheme (HJ-WENO).

To obtain the velocities required to solve Eq. 2, the following linearized optimization
problem is solved,

min
Vn,i

∆F =

np∑

i

((
∂F

∂Ω
)iAizi)

s.t Gj =

np∑

i

((
∂Gj

∂Ω
)iAizi) ≤ gtj j = 1, 2, ..., Ng,

−mi ≤ zi ≤ mi

(4)

where np is the number of boundary points, zi = Vn,i∆t is the movement of the ith
boundary point, the pseudo time step ∆t = 1, Ai is the area of the discretized boundary
associated with the ith boundary point, gtj is the target constraint value for the jth con-
straint and mi is the boundary movement limit. The shape sensitivities are expressed by
∂F
∂Ω

for the objective and
∂Gj

∂Ω
for the jth constraint [11–14].

The LSTO method used in this work, enables the use of the discrete adjoint method
and automatic differentiation. This is done by converting element sensitivities into shape
sensitivities [9]. Figure 1 illustrates the overall process.

In density-based topology optimization such as SIMP, the map between optimization
and the partial differential equation (PDE) solve is direct since the same analysis domain
is used both for the solution of the PDE and the design representation. For LSTO this
mapping is not straightforward, since the geometry is represented on a different grid than
the analysis mesh. In the LSTO used here, a mapping functionality has been developed
with a twofold function: First, the geometry (box 1) is mapped onto the analysis domain
using the Ersatz material approximation as shown in Figs. 2 (a) and (b). Element
densities are defined based on the area fractions computed for each element as the area
of the element over which ϕ ≥ 0 divided by the total area of the element. Elements with
(ϕ ≥ 0) have a density γ = 1, elements with (ϕ < 0) are void with γ << 1 and elements
that are intersected by the boundary have intermediate density values 0 ≤ γ ≤ 1. The
material properties are interpolated using the density field to solve the PDE(box 3). These
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element sensitivities can be obtained using any AD method and software (box 4). The
second function of the mapping, is to transfer the element sensitivities onto the boundary.
This procedure is briefly described in Figs 2 (c)-(d). More details can be found in [9].
To compute the shape sensitivity for a given boundary point i, a small perturbation is
assigned to it as shown in Fig. 2 (c) and (d). As a result to this perturbation, the
densities of the elements near this boundary point will change due to the new position of
the boundary. The boundary movement is associated approximately with the change in
the density of each element m as

∂γm
∂zi
≈ γm − γδm

δ
(5)

where γm is the density of the mth element before the perturbation, γδm is the density of
the mth element after the perturbation, and δ is the magnitude of the perturbation. The
element based sensitivities can be converted into the boundary shape sensitivities, (∂F

∂Ω
)i

and (
∂Gj

∂Ω
)i in Eq. 4 through the following relation

(
∂F

∂Ω
)i =

∂F

∂zi
=

Ne∑

m

∂F

∂γm

∂γm
∂zi

(6)

(
∂Gj

∂Ω
)i =

∂Gj

∂zi
=

Ne∑

m

∂Gj

∂γm

∂γm
∂zi

(7)

where Ne is the number of elements whose densities are affected by the perturbation.
After the mapping, the shape sensitivities can be provided to the optimization algo-

rithm (box 6) to solve the optimization problem in Eq. 4 update the level set function
using Eq. 3 (box 1).

Figure 1: Modularized LSTO architecture.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Perturbation scheme to compute shape sensitivities at the boundary points
based on neighbouring element sensitivities.

3 OPERATOR OVERLOADING IN LSTO

The overall implementation of OO in LSTO is illustrated by the pseudo code in Algo-
rithm 1. Figure 6 shows the computational efficiency comparison between different AD
tools for different mesh sizes. The two C++ OO libraries ADOLC and CoDiPack, and
the python semi-symbolic differentiation library Dolfin Adjoint are tested. The computa-
tional time for the analytical derivation using the discrete adjoint method is also provided
for comparison.

For the numerical investigations the L-Beam problem shown in Fig. 3 is used consid-
ering linear elasticity. The objective of interest is p-norm stress,

σpn =

(∫

Ω

σp
vmdΩ

)(1/p)

(8)

where σvm is the von Mises stress. The design variable field, is used to interpolate the
elemental stiffness matrix Ke for the mth element as

Ke,m = (Emin + γm(E − Emin))Ke,0 (9)

where E is the Young’s modulus of the material, Emin is the Young’s modulus of a void
element, (Emin + γm(E − Emin)) is the Young’s modulus of a an element cut by the
boundary with intermediate density value and Ke,0 is the stiffness matrix of an element
with density γ = 1.
The total system matrix is assembled as

K =
Ne∑

m

= Ke,m (10)

The discretized linear elasticity equation can then be expressed as
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Algorithm 1 LSTO with OO

1: n = 0 ▷ Iteration index
2: ϕ ▷ Initialise level set function
3: while ∆F ≥ toleranceandn < MaxIter do
4: area fractions ← LSTO boundary ▷ Discretize level set boundary
5: Begin AD tape
6: γOO[Ne]← Initialise ▷ γOO = OO active variable vector, NBSE = Number of

elements
7: γ = area fraction ▷ Density field based on the element area fractions
8: i← i+ 1
9: for m← 0 to Ne do ▷ Loop through the number of elements, Ne

10: Ke,m = (Emin + γOO,m(E − Emin))Ke,m ▷ Interpolation based on Eq. 9
11: K← assemble,Ke,0 ▷ Assmeble the total stiffness matrix, Eq. 10
12: end for
13: Ku = F ▷ Solve governing equation, Eq. 11
14: objective ← σpn(γOO,u) ▷ Compute Objective
15: End AD tape
16:

dσpn

dγ
← Reverse mode OO ▷ Total derivative directly obtained by reverse mode

OO
17:

∂σpn

∂Ω
← dσpn

dγ
∂γ
∂z

▷ Compute shape sensitivities using perturbation mapping (6)

18: Vn,i ← ∂σpn

∂Ω
▷ Solve the linearized optimization in Eq.4 problem for the velocities,

Vn,i
19: ϕ = ϕnew ▷ Update the level set function using Eq. 3
20: end while
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Figure 3: LBeam example

Figure 4: Comparison of computational time between different AD libraries

Ku = f (11)

where u is the displacement vector and f is the load vector.
Among the AD approaches, Dolfin Adjoint is the most efficient, with a computational

time close to the analytical approach. The C++ libraries have lower efficiencies as shown
in Fig. 6. This is expected since the symbolic differentiation of Dolfin Adjoint operates
on a mathematical level whereas the OO technique of the C++ libraries track and record
all the individual operations.

3.1 OO Considering the LSTO Sparsity

In the LSTO used in this work only the sensitivities of elements near the boundary are
needed to compute the boundary shape sensitivities. We utilize this sparsity to improve
the solution time and memory consumption AD in topology optimization. This is shown
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(a) (b)

Figure 5: (a) Sparse LSTO OO implementation and (b) Full OO implementation.

in Fig. 5. Only the densities for these elements are assigned as active OO variables instead
of the densities in the entire mesh. These elements are referred to as boundary sensitivity
elements (BSE). This reduces the number of variables for which the OO AD library needs
to track operations and differentiate.

Figure 5 illustrates a comparison of the average time per iteration between the original
implementation and the sparse implementation using the CoDiPack library. As can be
seen, efficiency is gained by employing the sparse implementation and this is more evident
as the mesh size increases.

Figure 6: Computational time comparison between sparse OO implementation and orig-
inal OO using Codipack

3.2 LSTO With Hybrid AD

The hybrid AD mode provides significant gains in memory consumption [18]. Here,
the sparsity of the level set method is exploited to make this approach even more efficient.

The main concept is that rather than using AD to obtain the total derivative of the
objective function with respect to the design variables, the total expression is analytically
derived and the AD is used only to obtain the partials. In the case of the p-norm objective
for example, the total derivative for the p-norm stress objective can be expressed as

dσpn
dγ

=
∂σpn
∂γ

+
∂σpn
∂u

∂u

γ
(12)

The unknown implicit term, ∂u
∂γ

. can be obtained by the total derivative of the residual

vector, R(u(γ),γ) = Ku− F = 0, with respect to the design variable vector, γ
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Figure 7: Total number of operations recorded in ADOLC tape for OO, Sparse OO and
Hybrid OO

dR

dγ
=
∂R

∂γ
+
∂R

∂u

∂u

γ
= 0 =>

∂u

γ
= −∂R

∂γ

[
∂R

∂u

]−1

(13)

Replacing Eq. 13 into Eq. 12 the total objective sensitivity can be obtained as

dσpn
dγ

=
∂σpn
∂γ
− λT ∂R

∂γ
(14)

in which λ is the adjoint variable vector computed by solving the the adjoint linear system

∂R

∂u
λ =

∂σpn
du

(15)

The idea then is that AD can be used to compute the Jacobian matrix given by the
partials ∂R

∂γ
and ∂R

∂u
and the vectors ∂σpn

∂γ
and ∂σpn

du
. Once the partials are obtained, Eqs.

14 and 15 can be solved manually to obtain the total sensitivity vector dσpn

dγ
.

In Fig. 7, the number of operations stored in the ADOLC tape for the original OO
implementation, the sparse OO and the hybrid OO are given. As can be seen, there is a
significant reduction in the storage of operations when the hybrid mode is used.

Fig. 8 shows the computational time spent by all the different OO implementations
using CoDiPack. The computational time for the analytical derivation using the disrete
adjoint method is also provided. We note that even within the same OO library, the
implementation algorithms can lead to different levels of efficiency. As expected, the
analytical derivation is the most efficient. The highest computational time is spent by the
hybrid mode implementation. Although the hybrid mode results in big memory savings
as indicated by Fig. 7, due to the more involved manual implementation for obtaining
the partials the efficiency is lost. However, when the hybrid mode is combined with the
sparsity of LSTO, the resulting implementation is the most efficient after the analytical
differentiation.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

542



Andreas Neofytou, H. Alicia Kim

Figure 8: Computational time comparison of all the different OO implementations using
Codipack

4 CONCLUSION

In this paper the use of AD for LSTO is investigated. The sparsity of LSTO can be
utilized to improve the memory consumption and solution time of OO. The combination
of this sparsity with the hybrid OO results in the most efficient and memory effective
implementation. Future directions of the current research, include the application of
these implementations in multyphysics topology optimization problems.
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Abstract. With the current environmental challenges, there is a relevant pressure on the
aeronautical sector towards more sustainable aircraft. As a consequence, both new design
methodologies and unconventional aircraft layouts are under investigation. Optimisation
considering the strong coupling between different disciplines is becoming a paradigm to
support new efficient designs. In this paper, an existing framework to carry out high-
fidelity aerodynamic/structural optimisation is enhanced with the development of a struc-
tural solver. The framework is modular, and uses algorithmic differentiation to provide
discrete-exact adjoints. The structural solver is being developed to tackle large-scale prob-
lems, providing responses that can be used as objectives and/or constraints in the optimi-
sation, and maintaining the framework requirements on modularity and sensitivity evalu-
ation. Preliminary capabilities of the structural solver in a purely structural optimisation,
or within an aerostructural optimisation are proved.

Keywords: Aerostructural optimisation, adjoint method, algorithmic differentiation,
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1 INTRODUCTION

1.1 Sustainable aviation challenge

The current leitmotiv in aviation is reducing carbon footprint. As claimed at the 77th
Annual General Meeting of The International Air Transport Association (IATA) held
in Boston 2021 [1], the objective is to achieve net-zero carbon emissions by 2050. This
resolution is pushing aircraft manufacturers towards devising new ways to make aviation
more sustainable, acting at different levels: (i) viable and sustainable aviation fuels, (ii)
reduction of inefficiencies in air traffic management and airspace infrastructure, (iii) design
of aerodynamically and structurally more efficient airframes, (iv) novel powertrains. Two
concepts are shown in Fig.1, depicting high aspect-ratio wings (a) and an electric aircraft
featuring distributed propulsion (b). The Transonic Truss-Braced Wing (TTBW) from
Boeing (Fig1.1a), possesses a thin and high aspect ratio wing stabilized by a lower diagonal
struts. According to the wind tunnel test results, it could consume up to 10% less jet
fuel [2]. In January 2023, NASA selected the Boeing TTBW for its Sustainable Flight
Demonstrator project [3]. Some recently awarded research projects are even considering

(a) Boeing TTBW rendering [4]. (b) Airbus ZEROe concept.

Figure 1: Two examples of new aircraft concepts.

the synergies between such new technologies [5].
Design of high aspect-ratio wings, or similarly, novel airframes poses exceptional chal-

lenges. The need of correctly modelling physic phenomena without legacy experience leads
towards higher-fidelity and highly coupled challenging approaches. The strong aerostruc-
tural (aerodynamic-structural) coupling is one of them.

For these reasons, significant effort has been dedicated in the last decades to the de-
velopment of high-fidelity digital means and approaches supporting the aerostructural
coupled design of novel airframes.

1.2 State of the art on aerostructural optimisation

The first publications on aerostructural optimisation dates back to the seventies: due
to the lack of computational power Haftka [6] used a lower-fidelity aerodynamic solver
(based on the Lifting Line Method). Only within the last 25 years the available compu-
tational power allowed high-fidelity solvers within gradient-based optimisation featuring
a large number of design variables. The work of Maute et al. [7] investigated the best
formulation for cases featuring large displacements, confirming that the three-field formu-
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lations (modelling of structural, aerodynamic and mesh domains) are more robust than
the two-fields ones, although at the expense of a 25% average increase in computational
performance. The authors resorted to a direct method for computing the sensitivities and
an Euler model for the aerodynamic simulation. The work of Martins et al. [8] is one of
the first attempts to efficiently use the adjoint method in a multidisciplinary optimisa-
tion, guaranteeing a relatively independence of the computational time from the number
of design variables. Barcelos and Maute [9] increased the fidelity of the analysis by ac-
counting for turbulence with the Spalart-Allmaras model [10]. The application was on
the Nasa’s Aeroelastic Research Wing (ARW2) [11], whose shape and stringer’s thickness
were changed to maximise the lift-over-drag-ratio or minimise the drag. Derivatives were
computed through a direct method.

Last decade has witnessed a definitive shift toward the adjoint method for sensitivity
evaluation. Kenway et al.[12] presented the coupling between the aerodynamic solver
SUmb [13] (employing automatic differentiation) and the linear structural solver TACS
[14] (that integrates its own adjoint solver). A Newton-Krylov methods was selected for
the solution of the aerostructural systems and the related adjoint problem. The scalabil-
ity of the approach was proved on a testcase with around 16 millions cells for CFD and
around 1 million structural degrees of freedom. The work of Wang et al. [15] is focused
on rotorcraft; the discipline solvers were FUN3D [16] (implementing its discrete consis-
tent adjoint-based method) and DYMORE5 [17] (employing complex variable method
for structural sensitivities with respect to the aerodynamic loads). To conclude, Sanchez
et al. [18] describes a method for coupled sensitivities evaluation based on fixed-point
iterations on the adjoint variables assisted by algorithmic differentiation. The approach
removes the need for an accurate construction of the Jacobian and poses no limits on the
complexity of the primal problem. One drawback was the monolithic architecture of the
platform.

1.3 Objective of this work

The starting point of this research is the work by Bombardieri et al [19], presenting a
framework for high-fidelity gradient-based aerostructural optimisation supported by au-
tomatic differentiation. The procedure is based on the same fixed-point iteration strategy
for coupled sensitivity computation as defined in [18]. The adjoint problem was modified
to increase the decoupling between the different modules of the framework. The solvers
exchanged information through a python wrapper. The resulting framework is highly
flexible and modular, allowing the introduction of new features, as new types of design
variables or replacing a solver, without much effort. The solver SU2 is used for the CFD
analysis while the structural part of the problem is solved by pyBeam. Both use the C++
library CoDiPack [20] for gradient evaluation in computer programs. The algorithm
selected for the gradient-based optimisation is the Sequential Least Square Quadratic
Programming (SLSQP) [21] available with the SciPy library [22]. The in-house solver
pyBeam was written to demonstrate the viability of the formulation, therefore it lacks the
flexibility and performance required for more realistic high-fidelity structural models.

The main aim of this work is extending the capability of the above-mentioned frame-
work to enable aerostructural optimisation concurrently considering wing planform- and
wingbox-levels design variables and responses. A second aim of this research is allowing
the framework to solve industrial problem. That entails the need to implement advanced
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techniques to increase computational performances (e.g., parallelization of the structural
solver both in the primal and adjoint phases).

The paper is structured as follows. Section 2 reports an overview of the technical
background and the current framework, with focus on the updated mathematical formu-
lation. Section 3 offers a description of the FEM solver and its development, as well as
a preliminary verification of both the primal and adjoint solvers and a purely structural
optimisation. Section 4 shows a preliminary aerostructural optimisation application of
the current state of the software.

2 TECHNICAL BACKGROUND

This section presents the technical background behind the formulation of the aerostruc-
tural optimisation problem. First, the equations that govern the coupled aerodynamic
and structural behaviour of the system are reviewed, with emphasis on the iterative so-
lution and specialization to the problem at hand. The focus is then shifted to the adjoint
problem for evaluation of the gradients; the formulation is fine-tuned to be synergistic
with capabilities offered by the employed algorithmic differentiation (AD) libraries.

2.1 The aerostructural primal problem

The modeling of the aerostructural problem is based on the so-called 3-fields formu-
lation [9, 23], and namely the fluid, the solid and the mesh field. Such a formulation is
considered a suitable method [24] for problems interested by significant structural dis-
placements.

2.1.1 The aerodynamic problem

The model of interest is the transonic fluid flow governed by the Navier-Stokes equa-
tions. The equations are formulated with the Arbitrary Lagrangian Eulerian (ALE)
[25, 26] approach to deal with moving mesh boundary. The expression for the fluid
flow residual F is as follows

F(w, z) =
∂w

∂t
+∇ ·Ψc(w, z)−∇ ·Ψv(w, z)−Q(w) = 0 (1)

where w = [ρ, ρv, ρE] and z are the vector of state variables and the fluid mesh grid
point positions respectively, being the former dependent on fluid density, flow velocity
and total energy per unit of mass (namely ρ, v and E). The terms Ψc, Ψv and Q(w)
are the convective and viscous fluxes and a generic source term.

The solver of the aerodynamic field is the open-source multi-physics software SU2 [27–
29]. The code is differentiated by the AD tool CoDiPack [20] in reverse mode, hence, it
is an ideal platform to perform adjoint-based gradient evaluation. Moreover, a top-level
interface in python is provided that promotes modularity and integration into multi-code
optimisation applications.

2.1.2 The structural problem

The structural problem is formulated under the hypothesis of large displacements and
small strains
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S(us,f s) = f int(us)− f s = 0 (2)

where S, f int, f s and us are the residual, the internal forces, the applied external loads
and the nodal displacements respectively. The structural problem is solved by the in-house
finite element solver AUGUSTO++. The software has been wrapped at the top-level with
a python interface, guaranteeing a straightforward coupling with SU2 (or other software)
for multphysics applications. AUGUSTO++ is also differentiated by CodiPack, enabling
the evaluation of sensitivities. The solver has been developed using classic parallelization
techniques to tackle large-dimension problems.

Only the case of linearly behaving structures is considered in this work, i.e.,

f int = Kus (3)

where the global stiffness matrix, K, depends on the structural design variables αs.

2.1.3 The fluid mesh deformation problem

Structural displacements lead to deformations of the fluid domain. Such an effect is
modelled considering the mesh behaving as a linear pseudo-elastic medium [30], i.e.,

M(z,uf ) = Kmz − f̃(uf) = 0 (4)

where Km is a fictitious stiffness matrix and f̃ are fictitious loads applied to the mesh
that must be compatible with the displacements on the fluid boundaries uf . The mesh
deformation is also handled by SU2 solver.

2.1.4 The interface operator

Loads and displacement are transferred between the fluid and solid mesh boundaries by
means of a spline matrixHMLS, defined through a Moving Least Square (MLS) algorithm
[31]. The relationship between the displacements and loads, defined on the structural mesh
(us, fs) and the same quantities defined on the aerodynamic mesh boundary (uf , ff )
can be stated as

uf = HMLSus (5a)

fs = HT
MLSff (5b)

The spline matrix HMLS is a function of the position of the structural nodes, xs, and of
the fluid nodes on the moving boundary, xf .

The in-house spline module is coded in C++ and relies on the ANN library [32]. As
for the other solvers, the spline module comes with a top-level python interface.
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2.1.5 Solution of the aerostructural system

The Fluid Structure Interaction (FSI) problem, specialized for linear structures, is
stated as follows:

F (w, z)−w = 0 (6a)

Ff (w, z)− ff = 0 (6b)

M (utot)− z = 0 (6c)

HT
MLSff − fs = 0 (6d)

K(αs)us − fs = 0 (6e)

HMLSus − uf = 0 (6f)

utot − uf − uFα = 0 (6g)

The system of equations will be briefly referred to with G = 0. Notice that for the
fluid domain the fixed-point operator, F , has been used instead of the residual form
one, F . The reasons behind this choice are summarized in [33]. For the fluid mesh
domain a pseudo fixed-point form is employed. The system is closed by the two interface
equations, Eq.(6d) and Eq.(6f) while Eq.(6g) states that the total displacement of the
wing (cumulative displacement) uFtot is given by the deflection during loads application,
uf , and the redesign during the optimisation process of the jig-shape, uFα . The state
variables are gathered into the y vector, as described in Tab.1

Table 1: State variable vector y

symbol description
us displacements defined on the structural mesh
uf displacements defined on the fluid mesh boundary
w aerodynamic state variables
z fluid mesh nodes displacements
fs loads defined on the structural mesh
ff loads defined on the fluid mesh boundary
utot cumulative displacement of the wing surface

The solution strategy is based on a Block Gauss-Seidel (BGS) approach. Nonlinearity
of the governing equations (in the current case, only aerodynamic ones) requires inner
iterations. Thanks to the modularity of the solvers, it is straightforward to set-up an
orchestrator calling the solvers and interchanging relevant data according to the most
appropriate solution strategy. The algorithm for solving the FSI problem is described in
Alg.(1). The output of the FSI problem is the primal solution y∗ = [w∗, z∗, u∗

tot, u
∗
f ,

u∗
s, f∗

s f
∗
f ]T .
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Algorithm 1 The aerostructural primal solver

Initialise [w z us uf fs ff ] = 0

while N ≤ NFSI do

transfer displacements to fluid mesh us → uf

run mesh deformation solver uf → z

run CFD solver z → w,ff

transfer loads on structural mesh ff → fs

run structural solver fs → us

end while

2.2 The aerostructural optimisation problem

The aerostructural optimisation problem can be written as

Minimize J(y(α),α)

w.r.t. α (7)

subject to G(y(α),α) = 0

Where J is the objective function (e.g., the drag coefficient or the weight of the structure)
and G represents the residual of the FSI problem. The objective function J is not specified
for the moment and its dependence on the state variables y (listed in Tab.1) and design
variables α is left general.

2.2.1 The design variables

The aerostructural optimisation problem features both structural (αs) and aerody-
namic (αa) design variables. Typical structural design variables are the wing components
and subelement thicknesses or parameters to describe the stacking sequence of composite
plies. The aerodynamic design variables are used to describe the wing jig-shape and are
parameterised. A Free Form Deformation (FFD) technique [34] is employed: the position
of the aerodynamic grid points (xFα) of the wing surface are interpolated through Bezier’s
basis functions with reduced number of control points according to the following formula

xFα =
l∑

i=0

m∑

j=0

n∑

k=0

Ni(µ)Nj(ν)Nk(ξ)xCP
ijk (8)

where xCP
ijk are the control points coordinates, identified by indexes i, j and k, whereas

the functions N are Bernstein Polynomials that depend on the parametric coordinates µ,
ν and ξ. These coordinates are evaluated with a point-inversion procedure as described
in reference [35]. As a consequence, the control point positions become the actual aero-
dynamic design variables of the problem αa. The chain rule allows to easily express the
relationship between the derivatives of the objective function with respect to the aerody-
namic grid points displacement and the control point displacements:

dJ

duCP
ijk

=
dJ

duFα

duFα

duCP
ijk

(9)

A parameteric deescription may be introduced also for the structural design variables,
e.g., by imposing a certain variation of the panels thickness along the wingspan.
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2.3 The aerostructural adjoint problem

The method for computing the coupled aerostructural gradients closely follows the one
proposed in reference [19]. In this preliminary work, small modifications have been done
to account for the case of linear structures.

First, the Lagrangian function is defined,

L (w, w̄, z, z̄,us, ūs,uf , ūf , fs, f̄s, ff , f̄f ,utot, ūtot,uFα ,αs) =

J + w̄T [F (w, z) − w] + z̄T [M(utot) − z] + ūT
tot[utot − uf − uFα]

+ ūT
f [HMLSus − uf ] + ūT

s [K(αs)us − fs] + f̄T
s [HT

MLSff − fs]

+ f̄T
f [Ff(w, z) − ff ]

(10)

where the adjoint variables related to the homologous state variables w̄, z̄, ūtot, ūf , ūs,
f̄s and f̄f have the role of Lagrange multipliers. The adjoint state variables are gathered
into the vector ȳT.

The adjoint equations of the problem in Eq.(7) are obtained after differentiation with
respect to the state variables, see Eq.(11a) to Eq.(11g). Even though the adjoint equations
are linear about the primal solution y∗, the adjoint to the flow solution equation can be
written in iterative form (for iteration n), Eq.(11a). Among the reasons behind this choice,
there is a more straightforward integration with the AD software.

∂J

∂w

∣∣∣
∗

+ w̄T
n

∂F

∂w

∣∣∣
∗

+ f̄T
f

∂Ff

∂w

∣∣∣
∗

= w̄T
n+1 (11a)

∂J

∂z

∣∣∣
∗

+ w̄T
∂F

∂z

∣∣∣
∗

+ f̄T
f

∂Ff

∂z

∣∣∣
∗

+ z̄T = 0 (11b)

∂J

∂utot

∣∣∣
∗

+ z̄T
∂M

∂utot

∣∣∣
∗

+ ūT
tot = 0 (11c)

∂J

∂uf

∣∣∣
∗
− ūT

f − ūT
tot = 0 (11d)

KT ūs = − ∂J

∂us

∣∣∣
∗
−HT

MLSūf (11e)

∂J

∂fs

∣∣∣
∗
− ūT

s − f̄T
s = 0 (11f)

∂J

∂ff

∣∣∣
∗
− f̄T

f + f̄T
s H

T
MLS = 0 (11g)

Finally, differentiation with respect to the design variables produces the sensitivities
equations

∂L

∂uFα

=
dJ

duFα

∣∣∣
∗

=
∂J

∂uFα

∣∣∣
∗
− ūT

tot = 0 (12a)

∂L

∂αs

=
dJ

dαs

∣∣∣
∗

=
∂J

∂αs

∣∣∣
∗

+ ūT
s

∂S
∂αs

∣∣∣
∗

= 0 (12b)

2.3.1 Solution of the adjoint problem

The adjoint variables are computed by iteratively solving the adjoint system in Eq.(11)
from top to bottom. Each set of equations from Eq.(11) to Eq.(11g) receives as input a
quantity from the previous set and provides input to the next block to be solved.
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The first three equations are handled by SU2 modules. In particular, the very first
one, as a consequence of the non linearity of the aerodynamic problem, is solved in a
fixed-point iteration fashion (for a certain number n of subiterations) and takes as input
the adjoint variables f̄f from the previous adjoint FSI iteration.

The terms in the form ȳT
∂A

∂x

∣∣∣
∗

are computed using the AD library CoDiPack. Each

module applies AD independently and exchanges information with the other modules
via high-level functions. From the implementation perspective, after the solution of the
primal problem, the AD software CoDiPack is initialized and one extra FSI iteration is
performed to allow for the registration of the computational path, needed to evaluate

the terms ȳT
∂A

∂x

∣∣∣
∗
. The adjoint variables are then used to compute the sensitivities,

with respect to the aerodynamic and structural design variables, as shown in Eq.(12).
Specialization by chosen design variables and objective functions can lead to simplification
of some of the equations.

3 DEVELOPMENT OF THE FEM MODULE

This section provides an overview of the in-house finite element code AUGUSTO++
which is responsible for providing the solution of the primal and adjoint structural prob-
lems within the aerostructural optimisation.

3.1 Overview on the code

The finite element code AUGUSTO++ is written in C++ according to the Object-
Oriented Programming paradigm and features parallel computation capability via the
MPI library [36]. The code is able to model the response of highly-flexible structures as-
suming small strains and elastic materials. The problem is solved considering an Updated
Lagrangian approach. For large displacement fields, the strains are evaluating consider-
ing a co-rotational approach. A library of different finite elements is implemented, among
which:

1. 4-nodes bilinear isoparametric shell element with Selective Reduced Integration. It
is based on Nastran CQUAD4 element [37].

2. 3-nodes CST and DKT element based on [38].

3. 2-nodes linear isoparametric bar element with constant cross section, Selective Re-
duced Integration and possibility to offset the section from the nodes line. It is
based on Nastran CBAR formulation [39].

4. Euler-Bernoulli beam element with Hermite interpolation [38].

5. rigid element RBE2 for modelling of stiff connections.

In this work, only linear static analysis are considered. The implementation of nonlinear
capabilities to some of the FEs is currently under development.
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3.2 Parallelisation strategy

As mention in section 2.1.2, the discretised linear finite element problem equilibrium
equation is described as below:

Kus = fs (13)

The parallelisation of the code consists in distributing the mesh (finite elements and
nodes) among different processes allowing for a parallel evaluation of the contributions to
the global stiffness matrix. The same holds for the RHS.

At the implementation level, each process owns a portion of the overall number of finite
elements and relative nodes. There are other two circumstances where MPI collective
communication between processes is necessary:

1. Application of external loads : if a nodal force is applied on nodes owned by more
than one process, only the process of lowest rank (among the ones owing that
node) contains the load value. This check is clearly possible through a collective
communication.

2. Checks on RBE2 and RBE3 elements : a series of checks are carried out to detect
inconsistent situations, e.g., a node cannot be slave and master at the same time as
a consequence of the presence of a circular pattern. These checks require collective
communication between processes.

The distributed global stiffness matrix and external loads are fed into an instance of the
linear system solver MUMPS [40] (which also relies on MPI and is instantiated on each
working process) that handles the solution in parallel of the linear system. After solving
the linear system, the entire solution vector us is made available to all the processes via
a broadcast operation.

3.3 Wrapping of the code with SWIG

To use AUGUSTO++ capabilities within a python environment, the C++ code is
wrapped with SWIG [41]. For this purpose, an additional higher-level class was imple-
mented in the core code containing high-level member functions that execute the main
operations of the entire analysis, such as initialisation of element/node/material/property
objects, solution of linear system, extraction of a desired structural response, solution of
the adjoint problem. Such functions are called by the orchestrator as well as by mem-
ber functions belonging to other higher-level objects which communicate with the other
wrapped modules of the framework, such as the swigged SU2 and spline modules, or the
functions of the numerical optimiser library, i.e. SciPy [22].

3.4 The adjoint of the structural solver

As far as the pure structural problem is concerned, the adjoint Eq.(11e) and the gra-
dient Eq.(12b) can be considered, discarding the the term ūT

fHMLS coming from the
aerodynamic coupling:

KT ūs = − ∂J

∂us

T ∣∣∣
∗

(14a)

dJ

dαs

=
∂J

∂αs

∣∣∣
∗

+ ūT
s

∂S
∂αs

∣∣∣
∗

(14b)
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If the objective function is a structural response dependent only on the structural dis-
placements and design variables (e.g., a stress component in an element), then J =
J(us(αs),αs).

It is well known that in the linear case, the adjoint equation (14a) is a linear system
featuring the transpose of the stiffness matrix, which has been already stored and fac-

torised during the solution of the primal problem. The partial derivatives
∂J

∂us

,
∂J

∂αs

and

∂S
∂αs

are easily evaluated with CoDiPack. After solving the primal problem, an extra

solution is carried out to perform the AD registration phase:

• Input registration: the design variables αs and the structural displacements us are
registered as inputs. Since at the current development stage of AUGUSTO++ the
allowed design variables refer to property or material parameters which are known to
all the processes, all the processes register as input each one of the design variables.
On the contrary, each process register as input only the components of us that were
allocated on it according to the mesh distribution, even if at the end of the linear
system solution, the entire vector us is made available to all the processes.

• Output registration: the response J and the residual S are registered as outputs.
The former is registered by a process only, the latter is distributed, therefore each
process registers its own components.

After solving Eq.(14a) and Eq.(14b), the entire vectors ūs and
dJ

dαs

are made available

on all the processes.
The computational path from the inputs to the outputs involves the solution of a

linear system. Recording all the passages related to the solution of the linear system is
generally not possible (need for source code, and unbearable memory requirements). To
circumvent this issue, the CoDiPack taping is interrupted right before the solution of the
linear system and it is resumed after the end of it. The missing part is the adjoint of the
linear system. According to reference [42], the reverse mode of the linear system Ax = b
problem is

ATs = x̄ (15a)

Ā += −s · xT (15b)

b̄ += s (15c)

where s is the solution of the adjoint of the linear system represented in Eq.(15a). The
adjoints of RHS (b̄) and of the system matrix (Ā) constitute the previously mentioned
lost information that could not be obtained during tape evaluation. The solution of the
problem in Eq.(15) is handled in CoDiPack through the External Function Helper class.

When considering the aerostructural coupling, and selecting an aerodynamic objective
function and design variables the, Eq.(14b) must not be solved, and the RHS of Eq.(14a)
becomes ūT

fHMLS. Moreover, it is not needed to perform the registration phase for the
structural solver. This is the case of the aerostructural optimisation shown in section 4.
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3.5 Preliminary verification

Verification of AUGUSTO++ has been done on a plethora of beam, plate and stiffened
plate models against Nastran results. Two selected verification tests are described in the
following subsections .

3.5.1 Structural analysis testcase

This subsection shows the verification of results carried out considering the NASA
Common Research Model (CRM). The finite element model Version 15 has been selected
from reference [43]. The model is composed by 14134 CBAR elements and 21349 CQUAD4
elements (35483 in total), whereas the total number of nodes is 13858. The structure is
completely made of aluminum. All the nodes at the wing root are fixed. A pictorial view of
the FE model is given in Fig.2a. Figure 3 shows the good agreement of the deflected shape

(a) Global view of the finite element model.

(b) Monitored nodes (Tab.2).

Figure 2: Views of the Nasa CRM V.15

predicted by Nastran and AUGUSTO++. AUGUSTO++ solution features a slightly
stiffer response attributed to a larger stiffness of the beam element. Form the quantitative
point of view, Table 2 compares the vertical displacement Uz and rotation Rx for two nodes
on the wing tip of the model.

3.5.2 Structural optimisation testcase

The finite element model is an aluminum plate of uniform thickness. The structure
is clamped on one edge (red coloured in Fig.4a) and loaded with distributed shear loads
on two adjacent edges (black segments in Fig.4a ). Five distinct shell property cards are
defined as design variables, resulting in a division of the panel into different sectors, as
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(a) Rear view. (b) Upper view.

Figure 3: Nasa CRM: deflection comparison between Nastran and AUGUSTO++.

Table 2: Generalized nodal displacements (in mm or rad) and relative error between
Nastran and AUGUSTO++.

node ID component Nastran AUGUSTO++ errr(%)

7178
Uz 4143.044 4105.809 0.898735

Rx 0.247399 0.245396 0.809785

13558
Uz 3972.113 3937.123 0.880891

Rx 0.246879 0.244878 0.810277

shown in Fig.4b where areas with thickness from t1 to t5 are the ones with colors from
red to fuchsia. The design variables initial values, lower and upper bounds are 12 mm,

(a) View of the FE model of the plate. (b) Shell elements grouping.

Figure 4: FE model for the structural optimisation.

1 mm and 20 mm respectively.
It is desired to reduce the weight of the structure keeping the Von Mises stress of a single
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shell element (black-coloured in the red area in Fig.4b) below the threshold of σTHS =
270 MPa. The Von Mises stress is evaluated at the centroid and half-thickness of the
element. The stress values computed by Nastran and AUGUSTO++ for the initial design
(t = 12 mm) are 106.4144MPa and 106.4311MPa with a relative error of 0.0157 %.

The optimisation history is depicted in Fig.5. It can be inferred that Nastran reaches
the optimal solution in roughly one third of the evaluations needed by AUGUSTO++.
This difference in performance is attributed to Nastran’s numerical optimisation software
overperforming SciPy library SLSQP algorithm. Nevertheless, as apparent in Table 3, the
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Figure 5: Optimisation history (green dot/ red cross: feasible/unfeasible design).

optimal designs feature similar values of mass and thickness t2 (which is the only design
variable that is not brought to the lower bound).

Table 3: Structural optimisation results summary (thicknesses in mm and mass in Kg).

t1 t2 t3 t4 t5 mass
Nastran 1.0 6.6804 1.0 1.0 1.0 7.786
AUGUSTO++ 1.0 6.6036 1.0 1.0 1.0 7.730
errr(%) 0.0 1.150 0.0 0.0 0.0 0.720

4 PRELIMINARY RESULTS

As already anticipated, the framework described in [19] has been modified by replacing
the structural solver pyBeam with AUGUSTO++. This section presents a comparison
between the results of an aerostructural optimisation when considering the linear and
nonlinear structural behaviour of the wing.

4.1 Aerostructural wing-shape model

The testcase is the one used in references [19]. It is based on the Nasa CRM testcase,
however, the structure is modeled with equivalent beams ([44]) and the synthetic Young
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Modulus has been tuned in order to obtain, at aeroelastic equilibrium, a wing-tip deflec-
tion of approximately the 6% of the semi-span. The FE model is represented in figure 6a.
The wing is simply supported at the wing-fuselage intersection and symmetry condition
is imposed at the root of the wing.

The flow model is based on Euler Equations. The fluid mesh is composed by 1.529.927
tetrahedral elements while the wing boundary is modelled with 71.998 triangular elements
(figures 6b and 6c). Steady flight at sea level (ρ = 1.2250 kg/m3) at M = 0.85 is assumed.
The interested reader is referred to the original works for further details on the testcase.
The design variables for the aerostructural optimisation test are the vertical displacements

(a) FE model. (b) Euler domain and boundary conditions.

(c) Euler surface mesh. (d) FFD box.

Figure 6: Testcase, from [19].

of 418 control points that define the FFD box (Fig.6d), based on Bezier functions of order
10, 18 and 1 along the chord, wing and thickness directions, respectively. The control
points on the symmetry plane are kept fixed.

The constraints regulate the thickness ratio of the airfoils at different cross sections
along the wingspan, as summarised in Tab.4.

The objective function is the drag coefficient CD. Summarizing, the jig-shape of the
wing is changed to obtain, in reference cruise conditions and relative flying shape, the
lowest CD. Also, the angle of attack is automatically adjusted at the aerodynamic solver
level to provide a lift coefficient CL = 0.5 of the deformed wing.
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Table 4: Geometric constraints. From [19].

spanwise pos. (%) 0.34 16.32 27.01 38.49 49.76 60.74 71.89 83.07 94.14

(t / c)|min (%) 15.6 12.5 11.2 10.4 10.0 9.8 9.6 9.5 9.5

4.1.1 Results

The optimisation history considering the linear modelling of the wing structure is
depicted in Fig.7 in terms of CD. As apparent, the aerostructural optimisation considering
the nonlinear structure converges faster to the optimal value. The pressure coefficient

0 5 10 15 20

0.0116

0.0117

0.0118

0.0119

0.0120

best

(a) Linear case.

0 2 4 6 8 10 12

0.01185

0.01190

0.01195

0.01200

0.01205

0.01210 best

(b) Nonlinear case [19].

Figure 7: CD vs optimisation iterations (green dot/ red cross: feasible/unfeasible design).

distribution over the optimised semi-wings is depicted in Fig.8. The optimal CD found in
the linear case is slightly lower than the one found in the nonlinear case as summarised in
Tab.5. For both cases, the optimised solutions present a smaller in-flight deflection than
the non-optimised cases.

Table 5: CD and wingtip displacement (in m) for optimal configurations.

CD
base CD

optim ∆ (%) δbasetip δoptimtip ∆ (%)

linear 0.0121 0.0116 4.132 1.866 1.777 4.77

nonlinear 0.0121 0.0118 2.479 1.845 1.745 5.42

5 CONCLUSIONS

This papers discussed the development of an in-house finite element solver for adjoint-
based aerostructural optimisation.

The software solving each multidisciplinary block of the overall framework is briefly
described, and the formulation of the coupled problem and relative adjoint system are pre-
sented. A brief overview of the solution method and the use of algorithmic differentiation
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Figure 8: Pressure coefficient distribution and deflection at the relative optimal design in
flight conditions.

software is also provided.
The development of the structural solver is then described a bit more in details, with

practical choices at the implementation level, such as parallelisation, wrapping and inte-
gration of algorithmic differentiation library. A simple purely structural testcase is then
shown comparing the in-house code predictions with the ones of the commercial software
Nastran; a structural optimisation testcase follows, and, again, results of the present
capability are checked against the ones provided by Nastran.

In the last section, a coupled aerostructural optimisation is performed considering as
design variables the jig-shape of the wing, and minimizing the drag coefficient of the
wing in its deflected shape. The optimisation is carried out considering linearly-behaving
structures, as opposed to the nonlinear case found in the literature. Results are shown
and briefly discussed.

5.1 Future works

The platform is currently under further development to consider concurrent mixed aero-
dynamic and structural design variables and responses. Moreover, the structural solver is
currently being improved modelling geometric nonlinearities and composite materials.
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Abstract. The current trend in the aeronautical industry aims at an increased aircraft
efficiency at all phases of the mission and a reduction on the environmental impact. Mor-
phing wing architectures address these objectives by optimally adapting the airfoil shape
during flight. The optimization of airfoil profiles is complex and computationally expensive
since it requires a trade-off among different objectives, constraints and numerical solutions.
The work-in-progress paper presents a data-driven approach to perform the aerodynamic
analysis and optimization of a morphing airfoil over a wide range of Reynolds numbers,
angles of attack (AOA) and Mach numbers. The methodology is based on iterative sur-
rogate models implemented in the MACH-Aero framework. Surrogates models such as
artificial neural networks, rely on a design dataset to compute the aerodynamic coeffi-
cients without solving the governing equations. A dataset has been created with thousands
of high fidelity Computational Fluid Dynamics (CFD) simulations with the purpose of
training a multi-layer perceptron network spanning the subsonic to subsonic ranges. Once
the network is trained, it returns as output the lift, drag and pitch coefficients. Hundreds
of airfoil shapes have been selected from the University of Illinois at Urbana-Champaign
(UIUC) database and the supercritical airfoils database made available by NASA. Python
scripts have been used such as PyHpy for the meshing, Prefoil for the space sampling, and
PyOptSparse for the optimization algoritms.

Keywords: Aerodynamic shape optimization, machine learning , morphing architec-
tures, aircraft design, performance
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1 INTRODUCTION

The current trend in the aeronautical industry is to increase the efficiency of the air-
craft through all phases of the mission. Aerodynamic shape optimization (ASO) is an
important design driver to increase efficiency and reduce environmental impact. Current
designs are base on a fixed airfoil design with control surfaces, selected from a trade-off
study based on a diverse set of requirements. Morphing wings present a potential solution
to improve aerodynamic efficiency throughout the mission envelope. [1]
Surrogate based optimization (SBO) presents a low cost evaluation model which reduces
time and computational cost. Once the surrogate is built, it is used in lieu of expensive
full-order simulation. Ideally, SBO provides the required accuracy and convergence de-
pending on model efficiency, design space size and infilling effectiveness [2].
This work-in-progress paper presents a surrogate based model to optimize morphing air-
foils from a subsonic regime to a transonic one. The surrogate model has been built based
on a dataset made up of a large number of candidate designs.
The paper is organised as follows. In Section 2, the state-of-art in AOS and SBO have
been presented. In Section 3, a surrogate model based on Artificial Neural Network (ANN)
algorithm in discussed. Finally, the key steps to develop the dataset used for training is
explained in Section 4.

2 THEORETICAL BACKGROUND

2.1 Aerodynamic Shape Optimization: state-of-art

Aerodynamic Shape Optimization (ASO) has gained increasing attention by designers
and engineers to improve aerodynamic performance of aircraft. With the development of
computer science tools and processes and Computational Fluid Dynamics (CFD), ASO
has become an important step in modern aircraft design [3].
The current design methodology is described in Fig.1.

The process starts by setting the optimization model with the definition of the design

Figure 1: Flow chart of ASO - Yan et all (2019) [3]

variables and the objective function subject to the design constrains. Each objective func-
tion is evaluated for a set of design constraints. There are two main types of constraints:
geometrical constraints and aerodynamic constraints. The design variables are defined
using shape parameterization. This evaluation requires the following steps:

• Geometry model parameterization is required to define the designed variables.
There are various approaches to parameterize the aerodynamic shape. The litera-
ture highlights the class shape function (CST) [4] and free-form deformation [5, 6]
methods that provide more geometric freedom by increasing the number of design
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variables. The Bézier-curve parameterization is used in this work based on the work
by Samareh [7]. The Bezier form is a far better representation than the power ba-
sis, even though mathematically equivalent, because the computation of Bernstein
polynomials is a recursive algorithm that minimizes the round-off error. Also, the
control points are more closely related to the curve position and they approximate
the curve.

• Mesh generation. The mesh is continuously updated with the geometry given by
the previous iteration of the optimization process.

• Numerical Analysis. In this step, the objective functions are computed using
CFD or surrogate models depending on the architecture of the algorithm. The
results are passed to the optimization model block which evaluates the accuracy
and decides if the process should continue.

Finally, the optimizer connects the optimization model and the evaluation workflow. It
is basically the core of the process since it practically evaluates the updating of the
design variables. The adjoint method pioneered by Jameson [8] enables the accurate and
efficient computation of gradients in high dimensional space. The method consists in the
computation of derivatives of interest based on the gradient in a numerical approach. It is
commonly available in CFD-solvers. MACH-Aero [9] is an example of implementation of
the adjoint optimization. The workflow of MACH-Aero has been considered as a reference
optimization process. The computational tools included in MACH-Aero have been used
to generate a reliable and representative training dataset for our model.

2.2 Surrogate Based Optimization

Surrogate models are mostly based on algebraic relations and evaluate the response of
the system without solving the governing equations but estimating its response. Once the
surrogate is built, it evaluates the objective functions at x locations defined in the design
of experiments (DoE). SBO is composed by two phases[10]:

• Design space is processed by the DoE and representative location are defined and
evaluated by the full-order aerodynamic model. The resulting dataset trains the
initial surrogate.

• Refinement of the model by infilling new training samples, derived by solving a
sub-optimal problem, the so called online training.

The DoE is the sampling strategy to adopt in order to maximize the amount of infor-
mation extracted from a limited number of samples [3]. Therefore, the primary interest
is finding the best trade-off between bias error and variance.
A model is defined as a function that maps input to an output. Therefore the surro-
gate model can be considered as a ”cheap-to-evaluate” mathematical approximation that
mimics the full-order expensive response of an original system over the design space [11].
The process is clearly sketched in Fig.2.

The surrogate modelling deals with [2]:

• sampling effectively the design space in order to provide representative locations;
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Figure 2: Surrogate model flowchart - Yondo et al (2017) [11]

• constructing a model from the available data;

• assessing the error attached to the model.

Lately the choice of the surrogate is not trivial but depends on the nature of the domain
and on the characteristics of the problem. A useful classification can be found in Queipo
et al [2]:

• Design variables are classified as parametric or not-parametric. The parametric
approaches (such as polynomial regression and Kriging) assume that there is a global
relation between the input data and the output desired variables. Non-parametric
ones (such as Multi Expertise and Artificial Neural Network) use a combination of
local information in different regions and finally an overall surrogate is obtained.

• The surrogate model can be built with the following methodologies: interpolation,
regression or projection.

3 METHODOLOGY

3.1 Theoretical Background

A popular approach for ASO supported by machine learning (ML) is based on con-
structing a data-driven surrogate model in order to simplify the geometric design space,
compute the aerodynamic derivatives without solving the governing equations and create
an optimization algorithm characterized by a reasonable computational time.
The ANN is the core component of deep learning. Actually it is the most used algorithm
for ML-base ASO. The simplest example of ANN is the Multilayer perceptron (MPL).
The unit base of MLP is the perceptron or neuron which are clustered in multiple levels
or layers. If inner layers are hidden, ANN became deep neural network (DNN). Neurons
are deeply connected and the overall system is the network. Each neuron is characterized
by its activation number. It takes as input the activation number of the first layer and
return activations of output layer. The critical part is to understand how it obtains the
results and how reliable they are. Generally a MLP is fully connected as it is shown in
Fig.3.

The output value are the weighted sum of the previous activation’s layer in which the
outputs of the model may be fed back into itself. To increase the reliability of network,
each neuron is associated with an unknown bias which aims to neglect the perceptron if
it is meaningfuly active in the current iteration. Within the i-th neuron of the L+1-th
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Figure 3: ANN-architecture- Li et all (2022) [10]

layer, the following operation is consequentially

a
(L+1)
i = σ ∗ (wT ∗ a(L) + bi). (1)

The σ function is a typical activation function called sigmoid function, which output are
within [0, 1] in order to restrict the activation values into that range. In DNN, activation
functions are important as they help in learning and making sense of non-linear and
complex mappings between the inputs and the corresponding outputs [12]. The main
problem is computing the optimum values of weights and bias such that the network can
provide the best results. Parameters are then defined in the training phase. There are
several ways to train a network but the most diffused is certainly the back-propagation
algorithm [13].

3.2 The aerodynamic surrogate

In this study, we have opted for the MLP implemented by Moin et al [14]. The MLP
takes the airfoil coordinates and flight regime as inputs and predicts the aerodynamic
coefficients without relying on CFD solvers. The authors of the neural network trained
it using a wide database of NACA series airfoils in a low subsonic and incompressible
regime, achieving very good results for the prediction of the aerodynamic polar.
The final architecture, depicted in Fig. 4, was designed to strike a balance between
accuracy and costs. The authors utilized the Keras API in Python and employed a fully
connected layer structure for the model implementation. The model consists of four layers,
each with a decreasing number of neurons. The chosen model shape is [512, 256, 128, 3].

Based on their findings and after consulting with the authors, we have decided to
train the same model for our specific application. For training, we employed the Adam
optimizer [15]. The model’s performance was evaluated using both the Root Mean Square
Error (RMSE) and R-squared values, while the Mean Square Error (MSE) was used to
control the loss during training. We trained the network for 50 epochs, feeding the data
in multiple batches of 128 epochs.

4 DATASET CREATION

The creation of a high-quality dataset is indeed crucial for training and validating the
model effectively. The key steps for the building of the dataset are:

1. Pre-processing of the University of Illinois at Urbana-Champaign (UIUC) Database
[16] and NASA Super Critical Aerofoil Database;
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Figure 4: Artificial neural network- Moin et all (2022) [14]

2. Sampling of each shape in 20 points via cosine distribution to represent each shape
in the dataset file;

3. Defining flight conditions and application regime in order to create the most repre-
sentative database ;

4. Computing lift coefficient (Cl), drag coefficient (Cd) and pitch coefficient (Cm). To
enhance the aerodynamic theory behind those coefficients we recommend to consult
[17];

5. Studying an infilling criteria to augment the size of the dataset.

6. The final dataset is saved in a csv file.

In each step, the process has been automated by coding several pipelines to simulate
the large number of aerofoils needed for the database. This approach is viable since the
computational tools chosen, such as pyHyp[18] for mesh generator, ADFlow [19] for CFD
simulations, and prefoil as sampler tool are all supported by Python API. All tools are
an open source distribution by MDOLab.

4.1 Computational fluid dynamic solver set up

Both subsonic and transonic CFD simulations are conducted with ADflow software
to solve the steady RANS equations [20]. The Spallart-Allmaras (SA)[21] is the recom-
mended option for external flows.
In order to realistically optimize a morphing airfoil, hundreds of shapes have been col-
lected. For each shape different flight conditions have been simulated since our objective
is the optimization of the airfoil from the subsonic regime up to the transonic regime.
The range of flight condition is reported in Table 1
For each airfoil 126 simulations are collected. An infilling criteria has been tested in order
to infill the sample with spare AoA and respect the budget cap imposed at the beginning
of the work. The infilling criteria chosen is a polynomial interpolation, linear for the Cl

and of the second order for Cd and Cm, according to the thin profile theory [22]. Infilling
the samples is a strategy that allows to save time considerably. The dataset has been
computed in 68% of the time necessary compared to the computation for each sample
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.
Table 1: CFD set up

Parameter Range Total
Reynolds 1,4e7 – 8,7e6 – 5,1e7 3

Mach 0,35 - 0,45 - 0,55 - 0,65 - 0,75 - 0,85 6
AoA [0 – 2 – 4 -6] (simulated) [1 – 3 – 5] (infilled) 7

via CFD simulation. The method seems to be efficient for subsonic regime but not so
accurate for the transonic regime.

4.2 dataset preparation and pre-processing

The aerofoils used in this work are taken from the UIUC database which collects almost
1600 different shapes that have been used in real-world applications. The UIUC library
covers mainly subsonic and transonic applications. To increase the number of shapes suit-
able for the transonic regime, 21 super-critical airfoils have been picked from the NASA
database[23]. The resulting complete training dataset consists of 1433 geometries.

The UIUC Aerofoil Coordinate database provides a collection of real aerofoils defined

(a) NACA2415 (b) Gottingen 207

Figure 5: Preprocessed aerofoil example

by a set of coordinates. Unfortunately the aerofoil data are not in a uniform format and
are not directly usable for the creation of the dataset. A preprocessing method is then
necessary. In this work, the same procedure proposed by Li et al [24] has been followed
where each shape has been interpolated by a B-spline curve. The number used for the in-
terpolation returns to be significantly important for the characterization of the transonic
shock.
Fig. 5 depicts the effect of the standardizing procedure on example airfoils.

4.3 Sampling

Each airfoil is represented in the dataset file by a finite and discrete number of points.
According to the study by Moin et al, each airfoil has been sampled via cosine distribution
by 20 points. The cosine distribution has been chosen despite of an uniform distribution,
since the accurate representation of the leading edge (LE) is necessary to ensure good
performance.
The shapes have pre-processed by normalizing the chord and rotating the chord in order
to have zero AoA. The leading edge and the trailing edge (TE) are thus fixed respectively
in [0,0] and [1,0]. Since both points are are not allowed to change, they do not contribute
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to the training of the surrogate, therefore those positions have been discarded and 20
additional points have been considered. The sampling code used for this task is the open
source code prefoil, a pySlpine-based utility mode that allows to handle airfoil geometries
and enable rapid, custom surface mesh generation.

Figure 6: Example of airfoil sampled by 20 points via cosine distribution

4.4 Mesh convergence study

As we already mentioned before, pyHyp is the computational tool used to generate
automatically the mesh of each shape. Since ADflow is a 3D finite volume solver, 3D
meshes are needed even for 2D prolems. This tasks has been automatically handled by
pyHyp that:

• Extrudes a surface mesh from the provided geometry and saves it in a PLOT3D file
with extension .xyz;

• Obtains a ”O” volume mesh layer by layer until the prescribed far-field edge is
reached.

Once the meshing process ends, the results are saved in a CFD General Notation System
(CGNS) file format. Even though pyHyp has been usefull in terms of the automation of
the process, it imposes some restrictions in terms of the boundary conditions (BC) and
the possible patterns of the mesh. The induced and only BCs chosen are viscous wall for
the airfoil edge and the far-field condition for the external edge.
The parameters that can be modified are:

• the number of nodes/layer in the off-wall direction; (N)

• the thickness of the first off-wall cell layer (s0);

• the distance of the far-field (marchdist).

The choice of the numberN if nodes/layers is important for the dissipation of the turbulent
wake. Moreover, for the purpose of consistency the first layer attached to the wall has to
be thick enough such that the dimensionless wall distance defined as

y+ =
u∗y

ν
(2)
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is equal or lower than 1 [25]. In this equation ν = µ/ρ is the kinematic viscosity and u∗ is
the friction velocity, which is estimated with the Schlichting skin friction correlation [26].
Considering the experimental results of the NACA0012, published on the NASA website
[27] specific trade off between accuracy and time consuming has been made.
The mesh convergence study has been conducted for both the subsonic regime and the
transonic regime, following the Richardson Extrapolation technique [28]. Indeed the dis-
cretisation error is estimated by extrapolating the solution of a grid with a fictitious grid
spacing on the order of zero:

ϕexact =
rpϕ1 − ϕ2

rp − 1
(3)

where ϕi is the grid solution value of the ith most refined grid, r is the grid refinement
ratio and s is the rate convergence index:

p =

ln

∣∣∣∣
ϕ3−ϕ2

ϕ2−ϕ1

∣∣∣∣
ln r

(4)

If the value of the grid refinement ratio is unsure, the procedure requires an estimation
of the effective grid refinement ratio as:

reffective =

(
N1

N2

)(1/D)

(5)

where Ni is the total number of grid points used for the ith grid and D is the dimension
of the flow domain. The former value is easily extrapolated from pyHpy output, that
prints on the terminal the progressing layer for each mesh. The latter is known from the
pre-processing phase where the chord has been normalised to the unit.

Table 2: Refinement set up

N s0 y+ N on walls Total nodes
COURSE 70 3, 00 ∗ 106 0.64 133 9314
MEDIUM 129 2, 00 ∗ 106 0.43 201 25929

FINE 180 1, 00 ∗ 106 0.21 401 72180

The Reynolds number study has been conducted on 3 refined meshes reported in Table
2. The effective grid resolution computed is equal to r = 2.7838
The results of the grid convergence study conducted are presented in Tables 3-4 and Figure
7. The study reveals that the values of Cd converges both in the subsonic and transonic
regimes as the number of cells in the grid increases. However, the finest refinement of the
mesh yields a significant increase of the CPU time and therefore the medium mesh has
been chosen for the computation of the dataset since the discretization error is lower than
the threshold of 5%.

The final mesh used is the one represented in Fig.8
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Table 3: Subsonic RE

Cd counts Cd %error CPU time [s]
COURSE 98.021 -19.65% 22.70
MEDIUM 84.936 3.65% 30.01

FINE 83.718 2.19% 1536.89
RE 83.599 - -

Table 4: Transonic RE

Cd counts Cd %error CPU time [s]
COURSE 153.61 - 5.20
MEDIUM 152.87 0.49% 14.93

FINE 152.86 0.001% 52.09
RE 152.85 - -

(a) Subsonic Case (b) Transonic Case

Figure 7: Richardson extrapolation plot

Figure 8: Mesh chosen for the dataset

5 THE INFILLING CRITERIA

A polynomial interpolation has been made to infill the spare AoA in our dataset. In
order to verify the accuracy of the strategy, 10 random shapes have been selected and
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simulated for a range of AoA [1−3−5] deg. For each airfoil of the batch, the high fidelity
samples have been compared with the respective infilled samples. The first study of the
Cd errors highlights that 9.83% of the infilled samples are characterised by a percentage
error higher than 5%.
On the one hand, the second detailed study of the errors shows that 76% of infilled
samples with ϵCd

> 5% is found in the transonic regime, particularly for Mach number in
the range [0.65−0.75−0.85]. On the other hand, the subsonic regime is well captured by
the interpolation. Those results lead to conclude that the strategy adopted is not accurate
for the transonic regime. As future work, the transonic regime will be fully simulated and
the infilling samples will be kept only for the Mach number equal or lower than 0.55.

6 TRAINING

The aerodynamic surrogate model has been trained with a quarter of the dataset to
validate the methodology adopted. Here, only 358/1433 shapes have been simulated
collecting a dataset of 42620 samples.
The training losses are depicted in Fig.9 and the accuracy is plotted in Fig.10.

Figure 9: Model loss function

Figure 10: Model accuracy

The losses plots are characterized by an asymptotic trend with a value of 0.005 while the
accuracy asymptotic value is equal to 0.97. The performance is justified by the temporary
roughness of the dataset.
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7 PRELIMINARY REMARKS

The first evaluations of the aerodynamic surrogate model are not as accurate as ex-
pected. The following preliminary observations are summarized:

• The MLP depends on the accuracy of the data. Even though the MPL is easily built
and adaptable for every application, if the dataset does not adequately represent
the design space, the results are not accurate.

• Morphing architectures cover a wide range of flight conditions. Therefore the dataset
may require the generation of a prohibitive number of samples in terms of compu-
tational cost and time.

• The MLP logic does not search for patterns, which may be useful for the intended
purpose.

Current work under development regarding the aerodynamic model include:

• Augment the size of the dataset, infilling more samples for the subsonic regime and
discarding the infilled samples for the transonic range.

• Build a convolutional neural network in order to compare the aerodynamic perfor-
mances of both aerodynamic surrogate models.

Currently, the training of a generative shape surrogate model coupled with the opti-
mizer and the aerodynamic model is being considered. The generative surrogate model
chosen is an informed generative adversial network (InfoGAN) proposed by Chen et al [29]
that will be trained based on the airfoils collected in the first phase. The GAN generates
realistic shapes and returns each new airfoil parameterized by a Bézier curve.
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[1] Ö. Cevdet, E. ÖZBEK, and S. Ekici. A review on applications and effects of morphing
wing technology on uavs. International Journal of Aviation Science and Technology,
1(01):30–40, 2021.

[2] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker.
Surrogate-based analysis and optimization. Progress in aerospace sciences, 41(1):
1–28, 2005.

[3] X. Yan, J. Zhu, M. Kuang, and X. Wang. Aerodynamic shape optimization using
a novel optimizer based on machine learning techniques. Aerospace Science and
Technology, 86:826–835, 2019.

[4] B. M. Kulfan. Universal parametric geometry representation method. Journal of
aircraft, 45(1):142–158, 2008.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

576



Sara Pucciarelli, Fernando Lau and Afzal Suleman

[5] J. Samareh. Aerodynamic shape optimization based on free-form deformation. In
10th AIAA/ISSMO multidisciplinary analysis and optimization conference, page
4630, 2004.

[6] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models.
In Proceedings of the 13th annual conference on Computer graphics and interactive
techniques, pages 151–160, 1986.

[7] J. A. Samareh. Survey of shape parameterization techniques for high-fidelity multi-
disciplinary shape optimization. AIAA journal, 39(5):877–884, 2001.

[8] A. Jameson, L. Martinelli, and N. A. Pierce. Optimum aerodynamic design using
the navier–stokes equations. Theoretical and computational fluid dynamics, 10(1):
213–237, 1998.

[9] M. Lab. Oerview of mach-aero. https://coderwall.com/p/wntyia/

how-to-cite-a-website-in-latex.

[10] J. Li, X. Du, and J. R. Martins. Machine learning in aerodynamic shape optimization.
Progress in Aerospace Sciences, 134:100849, 2022.

[11] R. Yondo, E. Andrés, and E. Valero. A review on design of experiments and surro-
gate models in aircraft real-time and many-query aerodynamic analyses. Progress in
aerospace sciences, 96:23–61, 2018.

[12] S. Sharma, S. Sharma, and A. Athaiya. Activation functions in neural networks.
Towards Data Sci, 6(12):310–316, 2017.

[13] H. Leung and S. Haykin. The complex backpropagation algorithm. IEEE Transac-
tions on signal processing, 39(9):2101–2104, 1991.

[14] H. Moin, H. Z. I. Khan, S. Mobeen, and J. Riaz. Airfoil’s aerodynamic coefficients
prediction using artificial neural network. In 2022 19th International Bhurban Con-
ference on Applied Sciences and Technology (IBCAST), pages 175–182. IEEE, 2022.

[15] Z. Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM
26th international symposium on quality of service (IWQoS), pages 1–2. Ieee, 2018.

[16] M. S. Selig. Uiuc airfoil data site. 1996.

[17] H. Kussner. General airfoil theory. Technical report, 1941.

[18] N. R. Secco, G. K. Kenway, P. He, C. Mader, and J. R. Martins. Efficient mesh
generation and deformation for aerodynamic shape optimization. AIAA Journal, 59
(4):1151–1168, 2021.

[19] C. A. Mader, G. K. Kenway, A. Yildirim, and J. R. Martins. Adflow: An open-
source computational fluid dynamics solver for aerodynamic and multidisciplinary
optimization. Journal of Aerospace Information Systems, 17(9):508–527, 2020.

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

577



Sara Pucciarelli, Fernando Lau and Afzal Suleman

[20] A. Yildirim, G. K. Kenway, C. A. Mader, and J. R. Martins. A jacobian-free approxi-
mate newton–krylov startup strategy for rans simulations. Journal of Computational
Physics, 397:108741, 2019.

[21] P. Spalart and S. Allmaras. Proc. aiaa 30th aerospace sciences meeting and exhibit,
1992.

[22] L. M. Milne-Thomson. Theoretical aerodynamics. Courier Corporation, 1973.

[23] C. D. Harris. Nasa supercritical airfoils: A matrix of family-related airfoils. Technical
report, 1990.

[24] J. Li, M. A. Bouhlel, and J. R. Martins. Data-based approach for fast airfoil analysis
and optimization. AIAA Journal, 57(2):581–596, 2019.

[25] H. K. Versteeg and W. Malalasekera. An introduction to computational fluid dynam-
ics: the finite volume method. Pearson education, 2007.

[26] L. Prandtl. The resistance law for rough plates. David W. Taylor Model Basin, Navy
Department, Washington DC, Translation 258, 1955.

[27] C. Rumpsey. 2dn00: 2d naca 0012 airfoil validation case. URL https://turbmodels.

larc.nasa.gov/naca0012_val.html.
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Abstract. Origami structures present desirable stowage properties for application in de-
ployable space structures. The present work proposes a design method for origami struc-
tures using topology optimization to find the axial rigidity distribution of the trusses and
the crease pattern that maximizes the displacement at set locations under prescribed forces
and boundary conditions. In the first part, a linear truss method is used to determine
small strain and small rotation mechanics of flexible origami, functional to study their
behavior at the initiation of folding. Subsequently, a modified nonlinear truss method is
implemented to consider large displacement and large rotation mechanics. To carry out
the optimization process, constraints on the number of fold lines and on the material dis-
tribution are applied. Previous studies on topology optimization of origami structures have
considered only folding and bending in their analyses. Here, it is shown that including
also the axial rigidity as a design variable leads to new promising origami designs.

Keywords: Topology optimization; Origami structures; Linear analysis; Nonlinear anal-
ysis; Truss method.
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1 INTRODUCTION

Space structures must be lightweight, compact and small during transportation to
space, and of large size when deployed in orbit. This makes origami the best choice
for certain applications, thanks to their capability to be deployed from a 2D to a 3D
configuration; to be changed in scale through folding and unfolding; to fold and unfold
without an external actuation in the case of active origami; to dynamically change the
shape according to specific design constraints; to be tailored for a specific task and to be
stowed in a relatively small volume.

Nevertheless, the application of origami structures in space missions is still limited.
This is due to the complexity of the nonlinear dynamics of deployment, of the mechanical
systems and the impossibility to be tested in orbit. For this reason, it is often mandatory
to use simplified design processes, but that still provide reliable results.

Various kinematic approaches have been applied [1, 2], with the assumption of rigid
origami. To improve on this analysis, [3] introduced a truss model to allow for facet
deformations using a linear method, hence considering only small strains and small de-
formations. This method was applied to topology optimization by [4], with the objective
of discovering origami crease patterns that maximize displacements at set locations.

In order to take into account large deformations and large rotations, nonlinear models
like the ones used in [5, 6] are required. A nonlinear topology optimization approach was
proposed by [7], where a procedure to find an origami crease pattern that achieves desired
large deformation through folding for a given input force was provided, using the fold
stiffness as a design variable and applying a constraint on the number of fold lines.

This work will be divided into two parts. In the first part, a linear topology opti-
mization will be carried out with the objective of improving the optimization method in
[4], introducing axial rigidity as a design variable thus allowing each truss to stretch in
an optimized way. Subsequently, the same process will be applied to nonlinear topol-
ogy optimization, referring to [7]. Although the complexity of the problem is slightly
increased with respect to these works, this modification enables to obtain promising re-
sults for topology optimization of origami structures, since new configurations and greater
actuation than using only the fold stiffness as a design variable are obtained.

Two gradient-based methods are used to perform the optimization: the Method of
Moving Asymptotes (MMA) [8] and the Sequential Quadratic Programming (SQP) [9].
Also, the axial rigidity distribution is optimized through a modified Solid Isotropic Ma-
terial with Penalization (SIMP) method used in [10].

Lastly, it must be noted that the thickness of the origami structure is not considered
in this work, but it has been studied in [11].

2 LINEAR TOPOLOGY OPTIMIZATION

2.1 Linear truss model

In this Section, a linear truss method is used to study small displacement and small
rotations in flexible origami structures. Fig. 1 shows a general starting configuration of an
origami with this method. Each vertex in the folded sheet, i.e. each node in the starting
configuration (black points in Fig. 1) is represented by a pin-joint, while each fold line
and external segment (grey lines in Fig. 1) is represented by a truss element.

Following the method in [12], modeling the folding patterns as a pin-jointed framework
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Figure 1: Reference grid of an origami sheet in the linear truss method.

allows the use of established structural engineering methods to study the mechanics of the
folded sheet. The mechanical properties of the pin-joint framework should be described
by introducing a stiffness formulation, that relates the nodal displacements u with the
applied nodal forces F through the material stiffness matrix K:

Ku = F. (1)

The matrix K can be obtained from:

K = KJ + KT , (2)

where KJ and KT are the stiffness matrices obtained from the fold constraint [13] and
the truss model respectively.

In a linear analysis the stiffness matrix remains constant and independent of u. This
has the advantage of having a low computational cost, but the drawback is that the applied
loads are required to be small, leading to small deformations. Even though origami folds
usually generate large deformation, this analysis can determine the optimal topology for
the initiation of folding.

2.2 Optimization Methods

2.2.1 Fold Constraint

The folding mechanism is derived from constraints on the relationship between the
dihedral angles (ϕ) and the nodal coordinates (X):

J =
dθ

dX
. (3)

This Jacobian can be evaluated considering each dihedral angle ϕ relative to adjacent
faces, like in Fig. 2, that is:

ϕ = sin−1

[
v12 × (v14 × v12) · (v12 × v13′)

sin γ sin β | v12 |3| v13′ || v14 |

]
(4)

where vij is the vector from node i to j.
For each fold line k, the fold stiffness Kk

J can be computed as:

Kk
J = (Jk)TGkJ

k k = 1, ..., Nf (5)
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Figure 2: Scheme of the origami element in the linear truss model.

where Nf is the number of fold lines and Gk is the fold stiffness relative to folding, hence
it is equal to zero in the trusses at the boundaries.

[4] proposed a design method for origami structures using topology optimization con-
sidering the fold stiffness G as a design element, to discover the optimized crease pattern,
i.e. the configuration of fold lines in the origami that allows to achieve the greatest actu-
ation. Only the fold lines required to obtain this actuation are revealed after the analysis,
considering a constraint on the maximum allowable number of fold lines that can be active
(i.e. soft folds with small values of G that allow folding), hiding the remaining inactive
fold lines (i.e. stiff folds with large values of G that do not allow folding). Even if the inac-
tive fold lines are not shown, they indicate that the two adjacent facets are considered as
one, therefore, if their angle ϕ is not zero, it is possible to observe a coarse representation
of facet bending. The fold stiffness is represented as the following function

Gk = 10α0+αk(α1−α0) (6)

which is continuous and differentiable to allow to use gradient-based optimization al-
gorithms. The design variable αk ∈ [0, 1], i.e. the fold stiffness exponent associated
with folding, is considered, while α0 and α1 are constants and Gk that takes values from
Gsoft = 10α0 to Gstiff = 10α1 .

2.2.2 Truss Model

The stiffness matrix from the truss model is the sum of every elemental stiffness matrix
of the truss elements kje, as follows:

KT =
Ne∑

j=1

kje (7)

where kje is a function of the axial rigidity EAj.
In this work, the optimization method in [4] is improved to consider also the axial

rigidity EA as a design element, discovering both the optimized crease pattern and the
axial rigidity distribution, i.e. the origami configuration in terms of the axial rigidity of
each truss that allows to achieve the greatest actuation. To obtain the axial rigidity, a
density-based approach to topology optimization can be considered, similar to the modi-
fied SIMP approach used in [10]. The design domain is discretized by finite elements with
an assigned axial rigidity density β:

EAj = EAmin + βp
j (EA0 − EAmin) j = 1, ..., Ne (8)
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where Ne is the number of truss elements, EA0 the axial solid rigidity of the material,
EAmin the axial void rigidity assigned to avoid singularity and p a penalization factor that
ensures black-and-white solutions. Considering the axial rigidity instead of the Young’s
Modulus E (like in [10]) has manufacturing advantages for the trusses in the structure
since it is possible to decide whether to act on their Young’s Modulus (changing material)
or on their area (keeping the same material).

2.3 Optimization Framework

The aim of this optimization is to find the axial rigidity distribution of the trusses and
the origami crease pattern that maximizes the displacement at set locations, achieving
the desired deformations through folding and stretching for a given input force. The
optimization problem is the following:

Find x = α1, ..., αNf
, β1, ..., βNe that

Minimize f = −cTu

Subject to

g1 = v0,1 −
1

Nf

Nf∑

i=1

xi ≤ 0; g2 = v0,2 −
1

Ne

Nf+Ne∑

i=Nf+1

xi ≤ 0; (9)

0 ≤ xi ≤ 1; ∀ i = 1, ..., Nf +Ne;

Ku = F.

f is the objective function, hence minimizing f means maximizing the displacements
along a direction, where c is a vector that selects the displacements relative to the prob-
lem, taking on values of either 1, −1 or 0 to indicate the associated direction of optimal
actuation. g1 ≤ 0 and g2 ≤ 0 are the two inequality constraints:

• g1 limits the number of foldlines to meet design requirements given a total of Nf

available lines, while v0,1 limits the fold stiffness used in the structure. The param-
eter l0 = 1− v0,1 is considered as the allowable foldline fraction.

• g2 limits the number of trusses that are allowed to have an axial solid rigidity EA0

to meet design requirements given a total of Ne available lines, while v0,2 limits the
axial rigidity used in the structure. The parameter m0 = 1 − v0,2 is considered as
the allowable material fraction of the structure.

The value of the design variables is limited to take on values between 0 and 1 from the
second constraint. The final constraint is the governing equation of the system. An
overview of the algorithm is shown in Fig. 3.

To use a gradient-based optimization algorithm, a sensitivity analysis must be carried
out. Therefore, the derivative of the stiffness matrix is found as:

∂K

∂x
=
∂KJ

∂α
+
∂KT

∂β
(10)

where α = x1, ..., xNf
and β = xNf+1, ..., xNf+Ne . The first term in Eq. (10) comes from
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Figure 3: Flow chart of the linear optimization process.

the fold constraint

∂KJ

∂αk

= JT
∂Gk

∂αk

J = JT
[
(α1 − α0)10α0+αk(α1−α0) log(10)

]
J (11)

while the second one from the truss model, using a chain rule

∂KT

∂βj
=

∂KT

∂EAj

∂EAj

∂βj
(12)

In Eq. (12), ∂KT/∂EAj is obtained from the gradient of the elemental stiffness matrix
of the truss elements and

∂EAj

∂βj
= pβ

(p−1)
j (EA0 − EAmin) (13)

The gradient is obtained from the following adjoint method:

K

(
∂u

∂xi

)
= −

(
∂K

∂xi

)
u (14)

Solving Eq. (14) with u and K obtained from Eq.s (1) and (2) respectively, ∂u/∂xi is
found, and the gradients df/dxi can be computed as:

df

dxi
= −

(
∂u

∂xi

)T

c (15)

Lastly, the optimization problem can be solved using the Method of Moving Asymp-
totes (MMA).
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2.4 Numerical Example

In the following example, the stiffness coefficients are set to α0 = 2 and α1 = 6.
Moreover, the applied forces must be small enough to remain in a linear regime, thus
obtaining displacements within a 10% range of the length of the structure.

The problem is studied first using the Origami Mechanism Topology Optimizer (OMTO)
in [14] that uses only the fold stiffness exponent (α) as design variable and the allowable
fold line fraction (l0) as constraint, then with a modified OMTO, which uses the method
described in this Section, that also considers the axial rigidity density (β) as design vari-
able and the allowable material fraction (m0) as constraint. The objective function varies
according to two parameters, introduced in this Section:

• l0: constraint on the number of allowable fold lines. If l0 = 0 no fold line of the
starting configuration is active, while if l0 = 1 all the fold lines are active;

• m0: constraint on the allowable material fraction. If m0 = 0 every truss member
has EA = EA0, while if m0 = 1 every truss member has EA = EAmin.

In [4], l0 alone is sufficient to carry out the analyses, while in this method also m0 needs
to be used since there are now two sets of design variables. However, when m0 = 0 (or
sufficiently close to 0 to avoid matrix singularities), the axial rigidity is kept equal among
each truss, hence the second set of design variables is not considered and the same results
as using only one set of design variables are obtained.

Lastly, the dashed and dotted-dashed lines in the optimized crease pattern indicate
the mountain and valley folds of the origami, while the black and magenta lines in the
optimized axial rigidity distribution indicate that the truss members have an axial rigidity
EA = EA0 = 108 Pa ·m2 or EA = EAmin = 104 Pa ·m2 respectively.

2.4.1 Miura-Ori fold pattern

In this example, the trusses in the starting configuration are displayed in Fig. 4a, and
the sheet is folded like in Fig. 4b.

(a) (b)

Figure 4: Starting configuration of the Miura-Ori pattern. (a) Reference grid; (b) Load
and boundary conditions (Lx = 1.0 m , Ly = 1.0 m , F = 600 N).

This configuration is called Miura-Ori, a famous fold pattern designed for deployable
structures in space, used in the Space Flyer Unit (SFU ) [15] in 1995. The green triangles
are the fixed nodes, the red squares are the applied loads F and the blue dots are the nodes
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where the displacements u need to be evaluated. This problem has 96 design variables
(Nf = 40 relative to α, Ne = 56 relative to β).

Tab. 1 displays that, maintaining l0 constant and equal to 0.50 and increasing m0

(from 0.30 to 0.50), more trusses are allowed to have a minimum axial rigidity. Therefore,
the structure becomes more flexible and can sustain the targeted larger displacement, for
the cost of higher design complexity and iteration steps (Fig. 5).

Table 1: Objective function and final configurations of the Miura-Ori pattern.

Figure 5: Objective function over iteration for different m0 (l0 = 0.50).
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3 NONLINEAR TOPOLOGY OPTIMIZATION

3.1 Nonlinear truss model

In this Section, the modified nonlinear truss model introduced in [5] based on [16] is
considered to study large displacements and large rotations, while optimizing efficiency
and accuracy to face the increased difficulty given by the nonlinearity of the problem.
This model presents a torsional spring around the truss element so that the fold stiffness
between two adjacent faces can be considered.

A scheme of the origami element of the nonlinear truss model is shown in Fig. 6a,
where Fi = (FXl

, FYl
, FZl

) (l = 1, ..., 4) is the nodal force applied in one of the nodes, ζ
is the nondimensional integration length dimension along the axial direction of the truss
and Xl = (Xl, Yl, Zl) is the global position of the l-th node. Xtri = {X1,X2,X3,X4} is
the set of global coordinates of the local nodes required to define the fold angle ϕ. Lastly,
the black line that connects nodes 1 and 2 is the fold line, a truss element that contains
an axial strain term with axial rigidity EA and a bending energy term with fold stiffness
G. The reference grid of the described model is shown in Fig. 6b, where the black lines
represent the trusses, enumerated in blue at the boundaries and in red in the interior (fold
lines), while the nodes are enumerated in black.

(a) (b)

Figure 6: Nonlinear truss model. (a) Scheme of the origami element; (b) Reference grid.

3.2 Principle of Minimum Energy

To study the nonlinear problem, the principle of minimum energy associated with the
single element in Fig. 6a is presented, and it can be extended to a generic origami truss
structure through assembly. The total energy (Π) is defined as

Π = Ut − P, (16)

where Ut is the potential energy and P is the external energy. The potential energy is

Ut = t0

∫ 1

0

[
EA

2
ε(X1,X2)

2 +
G

2
ϕ̃(X1,X2,X3,X4)

2

]
dζ, (17)

The axial strain ε quantifies the axial deformation of the truss element

ε =
1

t0
(|X2 −X1| − t0) =

1

t0
(
√

(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2 − t0), (18)

while ϕ̃ quantifies the torsional deformation of the spring

ϕ̃(X1,X2,X3,X4) = ϕ(X1,X2,X3,X4)− ϕ0, (19)
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where t0 and ϕ0 are the length and the angle of the structure in their undeformed state,
while ϕ is a nonlinear function that represents the current fold angle. A linear constitutive
model is assumed in Eq.s (18) and (19), however ε and ϕ̃ depend on the global position
of the nodes, hence they are subjected to the geometric nonlinearities of the motion.
Therefore, a penalty function is introduced to avoid singularities and to enforce that the
two facets are kept in contact. The external energy is

P = FX1(X1 −X0
1 ) + FX2(X2 −X0

2 ) + FY1(Y1 − Y 0
1 ) + FY2(Y2 − Y 0

2 )

+FZ1(Z1 − Z0
1) + FZ2(Z2 − Z0

2)
(20)

where for example X0
1 is the node location along the X axis of node 1 in the undeformed

state. The displacements of the nodes are u1 = X1 −X0
1 and u2 = X2 −X0

2.
Lastly, the principle of minimum energy states that the equilibrium state of the struc-

ture is reached when the following equation is satisfied

∂Π

∂Xl

= t0

∫ 1

0

[
EA

2

dε

dXl

+

(
Gp(ϕ)ϕ̃+G

ϕ̃2

2

∂p(ϕ)

∂ϕ

)
∂ϕ

∂Xl

]
dζ − FXl

= 0. (21)

To numerically solve the system of nonlinear equations introduced by the principle of
minimum energy, the Newton-Rapson method is applied, to linearize Eq. (21) through a
Taylor’s series expansion

Rl(Xtri) =
∂Π

∂Xl

≈ Rl(X
0
tri) +∇Rl(X

0
tri)∆Xtri = 0, (22)

where Rl(Xtri) is the residual and the term ∇Rl(X
0
tri) is the tangent stiffness Klm, where

the indices l and m iterate through all the components of Xtri. Eq. (22) is solved
iteratively until the equilibrium is reached (within a prescribed tolerance).

Furthermore, at each iteration, the residual Rl and the tangent stiffness Klm are com-
puted both for the trusses at the interior (fold lines) and for the trusses at the boundary
(with G = 0). The global residual and tangent stiffness are then computed:

Rl = RF
l +RB

l ; (23)

Klm = KF
lm +KB

lm. (24)

Lastly, increment loads are considered in this work in order to follow the complex
nonlinear loading behavior of origami structures subjected to large displacements.

3.3 Optimization Framework

Following the linear method described in the previous Section, the optimization method
introduced by [7] is improved including also the axial rigidity EA as a design element
through the SIMP method. However, due to the nonlinearity of the problems, this method
does not provide only black-and-white results, leading to some in-between values. The
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optimization problem is the following:

Find x = α1, ..., αNf
, β1, ..., βNe that

Minimize f = −cTu

Subject to

g1 = v0,1 −
1

Nf

Nf∑

i=1

xi ≤ 0; g2 = v0,2 −
1

Ne

Nf+Ne∑

i=Nf+1

xi ≤ 0; (25)

0 ≤ xi ≤ 1; ∀ i = 1, ..., Nf +Ne;

Rl(X) = 0; ul = Xl −X0
l ; l = 1, ..., 3Nn.

The difference with the linear optimization in the previous Section lies in the govern-
ing equation of the system, i.e. the linearization of the residual to solve the system of
nonlinear equations introduced in Eq. (21). Lastly, Nn is the number of nodes and 3Nn

is the number of degrees of freedom. An overview of the algorithm is shown in Fig. 7.

Figure 7: Flow chart of the linear optimization process.

Two gradient-based optimization algorithms are used to perform the analyses: the
Method of Moving Asymptotes (MMA) and the Sequential Quadratic Programming (SQP).

To carry out the sensitivity analysis, the derivative of the objective function with
respect to the design variables is obtained as follows:

df

dxi
=
∂f

∂xi
+

∂f

∂Xm

dXm

dxi
, (26)
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where ∂f/∂xi = 0 since f does not explicitly depend on xi, ∂f/∂Xm is found by directly
differentiating the objective function f , while dXm/dxi is determined solving the following
system of equations:

Klm

dXm

dxi
= −∂Rl

∂xi
. (27)

The vector ∂Rl/∂xi ∈ [3Nn, Nf +Ne] has the first Nf columns equal to

∂Rl

∂αk

= l0

∫ 1

0

[
∂Gk

∂αk

p(ϕ)ϕ̃+
∂Gk

∂αk

ϕ̃2

2

∂p(ϕ)

∂ϕ

]
∂ϕ

∂Xl

dζ, (28)

where
∂Gk

∂αk

= (α1 − α0)10α0+αk(α1−α0) log(10), (29)

while the remaining Ne columns are equal to

∂Rl

∂βj
= l0

∫ 1

0

1

2

∂EAj

∂βj

dε

dXl

dζ, (30)

where
∂EAj

∂βj
= pβ

(p−1)
j (EA0 − EAmin). (31)

3.4 Numerical Examples

To assess the capability of the nonlinear truss model with the introduction of axial
rigidity as a design variable, two different starting configurations of well-known origami
actuator designs (“Chomper” and “Square Twist” patterns) are studied. The optimization
is evaluated through comparisons with the optimizer in [17], where the design variable is
only the fold stiffness.

Furthermore, the dashed lines in the optimized crease pattern indicate the folds that
remain after the optimization (soft folds with G = Gsoft). Lastly, the color of the trusses
in the axial rigidity distribution is given in a scale of gray, where white and black indicate
an axial rigidity EA = EAmin or EA = EA0 respectively. However, a ”projected” axial
rigidity distribution is presented, where the black and magenta lines indicate that the
truss members have an axial rigidity with a relative error within 10% close to EA = EA0

or EA = EAmin respectively, while greater than 10% for the gray lines.

3.4.1 Chomper fold pattern

The first example considers the Chomper fold pattern, which has been applied as a
gripping mechanism for surgical tools [18], miniature robots [19], soft robotics [20] and
deployable structures. The problem has 48 design variables (Nf = 18 relative to α,
Ne = 30 relative to β). Fig. 8a shows the reference grid of the structure, while Fig.
8b shows the three-dimensional representation of the starting configuration with the load
and boundary conditions.
In this example, the following parameters will be considered: EA = 107 Pa ·m2 for one
design variable; EAmin = 105 Pa ·m2 and EA0 = 107 Pa ·m2 for two design variables;
l0 = 0.44 (equivalent to 6 active fold lines allowed); Gstiff/Gsoft = 103. To demonstrate
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(a) (b)

Figure 8: Starting configuration of the Chomper pattern. (a) Reference grid; (b) Load
and boundary conditions (Lx = 0.2 m , Ly = 0.2 m , F = 10 000 N).

the effect that material properties have on the optimal actuation motion, two sets of
material properties will be considered, varying Gsoft and Gstiff :

1. Case 1: EA/Gstiff = 101 (or EA0/Gstiff = 101 for two design variables);

2. Case 2: EA/Gstiff = 103 (or EA0/Gstiff = 103 for two design variables).

For each case, different values of the constraint m0 will be used to study the effect of the
addition of the second set of design variables.

Case 1

Tab. 2 shows the values of the objective functions and the final configurations of the
Chomper problem for Case 1 obtained with the MMA method.

Table 2: Objective function and final configurations of the Chomper pattern, Case 1.

All the configurations in Tab. 2 discover the Chomper fold pattern. Like in the linear
case, if m0 is increased the structure becomes more flexible and can sustain a larger
actuation than the one in [7], but with more iteration steps, as shown in Fig. 9.
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Figure 9: Case 1, objective function over iteration for different m0 (l0 = 0.44).

The small ratio considered in Case 1 between the axial rigidity of the truss element
and a stiff fold (EA/Gstiff = 101) favors facet stretching over facet bending. Therefore,
the structure appears to be slightly stretched or compressed along some trusses.

Lastly, since the load condition and l0 are kept constant during this analysis, the
optimized crease pattern is the same for the considered material fractions.

Case 2

Tab. 3 shows the values of the objective functions and the final configurations of the
Chomper problem for Case 2 obtained with the MMA method.

Table 3: Objective function and final configurations of the Chomper pattern, Case 2.

The ratio considered in Case 2 between the axial rigidity of the truss element and a stiff
fold (EA/Gstiff = 103) is larger than the one considered in Case 1, hence facet bending
is favored over facet stretching. However, the gradient-based optimization using one set

AeroBest 2023 – II ECCOMAS Thematic Conference onMultidisciplinary Design Optimization of Aerospace Systems

592



Vincenzo Cretella, Abdolrasoul Sohouli, Alfonso Pagani and Afzal Suleman

of design variables fails to discover an origami configuration that leads to positive vertical
actuation in the output nodes. Fig. 10 shows that in this case the problem does not
converge and the iterative process is stopped at 100 iterations, resulting in an objective
function value close to zero.

Figure 10: Case 2, objective function over iteration for different m0 (l0 = 0.44).

Nevertheless, as shown in Tab. 3, using two sets of design variables it is possible
to observe a vertical actuation of the output nodes and the bending of the structure.
Furthermore, if m0 is increased, more trusses are allowed to have a minimum axial rigidity,
thus the final configuration tends to lean toward that of Case 1. Therefore, for m0 = 0.8,
the Chomper fold pattern is discovered, obtaining a larger actuation than with lower m0

values, but for the cost of more iteration steps, as shown in Fig. 10.
Tab. 4 shows the real axial rigidity distribution of the structure for Case 1 and 2.

Table 4: Axial rigidity distribution of Case 1 and Case 2 of the Chomper pattern.

Lastly, the analysis is repeated with the SQP method, obtaining the same final con-
figurations. As it can be observed from Fig. 11, both optimization methods converge to
the same results, but the SQP method needs more iterations to converge due to its higher
computational cost, as described in [21].
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(a) (b)

Figure 11: Objective function over iteration with SQP and MMA methods of the Chomper
pattern, for l0 = 0.44, m0 = 0.80. (a) Case 1; (b) Case 2.

3.4.2 Square Twist fold pattern

The second example considers the Square Twist fold pattern, with 384 design variables
(number of fold lines Nf = 176, total number of trusses Ne = 208). Fig. 12a shows the
reference grid of the structure, while Fig. 12b shows the three-dimensional representation
of the starting configuration with the load and boundary conditions.

(a) (b)

Figure 12: Starting configuration of the Square Twist pattern. (a) Reference grid; (b)
Load and boundary conditions (Lx = 0.4 m , Ly = 0.4 m , F = 10 000 N).

The loads and boundary conditions in Fig. 12b should result in an inward folding
followed by a twisting motion to achieve a flat folded configuration. In this example,
the following parameters will be considered: EA = 108 Pa ·m2 for one design variable;
EAmin = 106 Pa · m2 and EA0 = 108 Pa · m2 for two design variables; l0 = 0.20
(equivalent to 32 active fold lines allowed); m0 = 0.50 (104 trusses are allowed to have
axial rigidity EA = EAmin); EA/Gstiff = 104 (or EA0/Gstiff = 104 for two design
variables); Gstiff/Gsoft = 103. The number of design variables is increased with respect
to the previous examples, thus the problem is now more complex and the convergence
rate of the algorithm is significantly slowed.

Again, the optimization was carried out both with MMA and SQP methods. How-
ever, the objective function obtained with MMA oscillates without reaching convergence,
probably due to the inability of the method to handle complex designs. Therefore, only
the results obtained with the SQP method will be shown as follows.

Tab. 5 shows the objective functions and the final configurations obtained for one and
two design variables.
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Table 5: Objective function and final configurations of the Square Twist pattern.

As it can be noted, the optimized crease patterns in Tab. 5 do not satisfy the constraint
on the allowable number of fold lines, likely due to numerical instability phenomena
during the optimization process related to the nonlinearity of the problem. Therefore,
thresholding of the results is required and implemented as follows:

• for one design variable, the 32 lowest values of α (corresponding to l0 = 0.2) are set
equal to 0 (soft active folds) and the remaining values to 1 (stiff inactive folds);

• for two design variables, the 32 lowest values of α and the 104 lowest values of β
(corresponding to m0 = 0.5) are set equal to 0 and the remaining values to 1.

The results obtained after the thresholding are displayed in Tab. 6.

Table 6: Thresholded results of the Square Twist pattern.

The actuation has decreased since a smaller number of active fold lines is registered,
hence the structure is allowed to fold along fewer fold lines. Also, the two optimized crease
patterns do not match like in the previous example. However, under the same conditions,
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adding the second set of design variables, the new configuration leads to an increase of
about 20% in the displacement. Therefore, also this example shows how adding axial
rigidity as a design variable can lead to new promising configurations capable of greater
actuation.

Nevertheless, a flat configuration is not achieved using gradient-based optimizations.
Therefore, further analyses are required to study the effect of the described method on a
topology optimization based on non-gradient-based optimization, like the Genetic Algo-
rithm (GA).

4 CONCLUSIONS

The present work describes a design method for origami structures using topology
optimization. A truss model is utilized for linear and nonlinear analysis, proving to be a
simple yet effective method to find new promising origami designs.

In the first part, a linear analysis is carried out, providing a low computational cost
model effective in analyzing origami structures at the initiation of folding. Subsequently,
a nonlinear analysis model is utilized to consider large displacements and large rotations
while optimizing the efficiency and accuracy of the results.

Previous works on topology optimization of origami structures have only considered
fold stiffness relative to the bending energy as a design variable, discovering origami fold
patterns that maximize the displacement at set locations. In this work, also axial rigidity
is considered a design variable, improving the optimization by allowing each truss to
stretch in an optimized way.

The capability of the method is assessed through three test cases considering well-
known origami designs, one for the linear and two for the nonlinear analysis. The results
obtained using only fold stiffness as a design variable are compared to the ones obtained
using also axial rigidity with the described method.

The study demonstrates that, if the axial rigidity is allowed to vary among the trusses
of the structure, new configurations can be discovered. Moreover, with a variable axial
rigidity, the structure is more flexible and can sustain a targeted larger actuation.

In this study, only gradient-based optimizations are applied. However, as shown in the
Square Twist example, this kind of optimization does not always lead to optimal solutions
for complex origami configurations involving highly nonlinear motions. Therefore, for fu-
ture studies, the application of the described method to non-gradient-based optimizations
needs to be assessed.

Lastly, origami structures usually present repeating patterns and exhibit equilibrium
bifurcations off the flat state. Hence, the method can be generalized including periodic
boundary conditions and modal analysis in the optimization process.
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Abstract. Automated Fiber Placement (AFP) is an automated manufacturing technique
that can produce large-scale structural composite parts in a repeatable manner with a high
production rate. The AFP technique has been gaining notable attention and importance
due to i) the need for producing large-scale/high-volume composite structures such as fuse-
lage and wing skins and ii) enabling simultaneous lay-up and consolidation, thereby leading
to a significant reduction in material and labor costs. An AFP machine can have a robotic
arm with a fiber placement head or end effector that lays up thermoset, thermoplastic, or
dry fiber tows in different orientations, which can be determined in accordance with the
loading configurations. Today, mostly carbon fiber-reinforced thermoset-based composite
materials are used for manufacturing aerospace structural parts. However, the well-proven
shortcomings of thermoset polymers such as limited shelf life, long processing times, rela-
tively low fracture toughness, and poor absorption ability against water and chemicals force
the aviation industry to seek for alternative composite material solutions, particularly for
new-generation aircraft components. Carbon fiber-reinforced high-performance thermo-
plastic composites can be regarded as a very competitive alternative to their thermoset-
based counterparts due to their following important attributes; high toughness, damage
tolerance, unlimited storage life without any need for cold storage, recyclability, high chem-
ical/solvent resistance, and relatively easier processability as they do not entail complex
chemical reaction or curing process. Moreover, thermoplastics can readily lend themselves
to automated manufacturing processes such as AFP. However, the high-performance ther-
moplastic composite structures manufactured with the AFP process can only be realized by
successful implementations of material selection, process design, joining practices, design,
and validation with prototyping for any specific application. Additionally, the fundamental
steps of the composite value chain should be followed with continuous inspection consid-
ering the service conditions. In this framework, this talk will highlight the steps of the
composite value chain for future practices with advanced thermoplastics by addressing the
integrated and complementary building blocks of i. material characterization, ii. process
design, iii. joining challenges, iv. mechanical characterization with inspections, and v.
service life performances. The composite value chain will be evaluated with different case
studies. First, the importance of accurate material input to the process design will be pro-
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vided with an improved thermal model considering the degree of intimate contact, degree
of bonding, and fiber orientation. Next, the process design practices will be introduced
considering the energy efficiency and digital transformation challenges by promoting in-
situ consolidation. Moreover, the new opportunities with thermoplastic resin systems for
joining technologies will be emphasized in a competitive manner with different welding
mechanisms and adhesive joints which become ground for novel multifunctional material
solutions to facilitate the joining performance. Then, the new challenges with new ma-
terials and processing techniques will be discussed from destructive and non-destructive
mechanical characterization perspectives. Finally, the durability of the future material
will be reported under harsh service conditions at different processing conditions.

Keywords: composite materials, manufacturing technique, automated fiber placement,
large-scale structures, high-volume structures, high-performance thermoplastic
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